Pflügers Archiv

, Volume 447, Issue 5, pp 519–531 | Cite as

Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6

  • Nian-Hang Chen
  • Maarten E. A. Reith
  • Michael W. QuickEmail author
The ABC of Solute carriers Guest Editor: Matthias A. Hediger


The SLC6 family is a diverse set of transporters that mediate solute translocation across cell plasma membranes by coupling solute transport to the cotransport of sodium and chloride down their electrochemical gradients. These transporters probably have 12 transmembrane domains, with cytoplasmic N- and C-terminal tails, and at least some may function as homo-oligomers. Family members include the transporters for the inhibitory neurotransmitters GABA and glycine, the aminergic transmitters norepinephrine, serotonin, and dopamine, the osmolytes betaine and taurine, the amino acid proline, and the metabolic compound creatine. In addition, this family includes a system B0+ cationic and neutral amino acid transporter, and two transporters for which the solutes are unknown. In general, SLC6 transporters act to regulate the level of extracellular solute concentrations. In the central and the peripheral nervous system, these transporters can regulate signaling among neurons, are the sites of action of various drugs of abuse, and naturally occurring mutations in several of these proteins are associated with a variety of neurological disorders. For example, transgenic animals lacking specific aminergic transporters show profoundly disturbed behavioral phenotypes and probably represent excellent systems for investigating psychiatric disease. SLC6 transporters are also found in many non-neural tissues, including kidney, intestine, and testis, consistent with their diverse physiological roles. Transporters in this family represent attractive therapeutic targets because they are subject to multiple forms of regulation by many different signaling cascades, and because a number of pharmacological agents have been identified that act specifically on these proteins.


Amine Amino acid Neurotransmitter Osmolyte balance Synaptic transmission Uptake 



This work was supported in part by National Institutes of Health Grants DA11978, DA13261 to MEAR, and DA10509, MH61468 to MWQ.


  1. 1.
    Adkins EM, Barker EL, Blakely RD (2001) Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain 1 in substrate recognition. Mol Pharmacol 59:514–523PubMedGoogle Scholar
  2. 2.
    Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, Das S, Javitch JA Rudnick G (2003) Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 278:12703–12709CrossRefPubMedGoogle Scholar
  3. 3.
    Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, Tham CS, Tsai C, Jia J, Ashton D, Klitenick MA (2001) ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 60:1414–1420PubMedGoogle Scholar
  4. 4.
    Aubrey KR, Mitrovic AD, Vandenberg RJ (2000) Molecular basis for proton regulation of glycine transport by glycine transporter subtype 1b. Mol Pharmacol 58:129–35PubMedGoogle Scholar
  5. 5.
    Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD (2000) Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci 20:7571–7578PubMedGoogle Scholar
  6. 6.
    Bauman PA, Blakely RD (2002) Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch Biochem Biophys 404:80–91CrossRefPubMedGoogle Scholar
  7. 7.
    Beckman ML, Quick MW (1998) Neurotransmitter transporters: regulators of function and functional regulation. J Membr Biol 164:1–10CrossRefPubMedGoogle Scholar
  8. 8.
    Bennett ER, Su H, Kanner BI (2000) Mutation of arginine 44 of GAT-1, a (Na+ + Cl-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J Biol Chem 275:34106–34113CrossRefPubMedGoogle Scholar
  9. 9.
    Blakely RD, Bauman AL (2000) Biogenic amine transporters: regulation in flux. Curr Opin Neurobiol 10:328–336CrossRefPubMedGoogle Scholar
  10. 10.
    Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL (1992) Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transporter system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem 267:21098–21104PubMedGoogle Scholar
  11. 11.
    Bossi E, Giovannardi S, Binda F, Forlani G, Peres A (2002) Role of anion-cation interactions on the pre-steady-state currents of the rat Na+-Cl-dependent GABA cotransporter rGAT1. J Physiol (Lond) 541:343–350Google Scholar
  12. 12.
    Carneiro AM, Ingram SL, Beaulieu J-M, Sweeney A, Amara SG, Thomas SM, Caron MG, Torres GE (2002) The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 22:7045–7054PubMedGoogle Scholar
  13. 13.
    Chang AS, Starnes DM, Chang SM (1998) Possible existence of quaternary structure in the high-affinity serotonin transport complex. Biochem Biophys Res Commun 249:416–412CrossRefPubMedGoogle Scholar
  14. 14.
    Chen J-G, Rudnick G (2000) Permeation and gating residues in serotonin transporter. Proc Natl Acad Sci USA 97:1044–1049CrossRefPubMedGoogle Scholar
  15. 15.
    Chen N, Vaughan RA, Reith MEA (2001) The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis. J Neurochem 77:1116–1127CrossRefPubMedGoogle Scholar
  16. 16.
    Chiu C-S, Jensen K, Sokolova I, Wang D, Li M, Deshpande P, Davidson N, Mody I, Quick MW, Quake SR, Lester HA (2002) Counting GABA transporters at presynaptic terminals of knock-in mice carrying GAT1-GFP fusions. J Neurosci 22:10251–10266PubMedGoogle Scholar
  17. 17.
    Deken SL, Beckman M, Boos L, Quick MW (2000) Permeation through GABA transporters is regulated by syntaxin 1A. Nat Neurosci 3:998–1003CrossRefPubMedGoogle Scholar
  18. 18.
    Deken SL, Wang D, Quick MW (2003) Plasma membrane GABA transporters undergo rapid recycling and reside on distinct synaptic-like vesicles. J Neurosci 23:1563–1568PubMedGoogle Scholar
  19. 19.
    Evans J, Herdon H, Cairns W, O'Brien E, Chapman C, Terrett J, Gloger I (1999) Cloning, functional characterisation and population analysis of a variant form of the human glycine type 2 transporter. FEBS Lett 463:301–306CrossRefPubMedGoogle Scholar
  20. 20.
    Falkenburger BH, Barstow KL, Mintz IM (2001) Dendrodendritic inhibition through reversal of dopamine transport. Science 293:2465–2470CrossRefPubMedGoogle Scholar
  21. 21.
    Farmer MK, Robbins MJ, Medhurst AD, Campbell DA, Ellington K, Duckworth M, Brown AM, Middlemiss DN, Price GW, Pangalos MN (2000) Cloning and characterization of human NTT5 and v7-3: two orphan transporters of the Na+/Cl-dependent neurotransmitter transporter gene family. Genomics 70:241–252CrossRefPubMedGoogle Scholar
  22. 22.
    Foster JD, Pananusorn B, Vaughan RA (2002) Dopamine transporters are phosphorylated on N-terminal serines in rat striatum. J Biol Chem 277:25178–25186CrossRefPubMedGoogle Scholar
  23. 23.
    Gainetdinov RR, Sotnikova TD, Caron MG (2002) Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci 23:367–373CrossRefPubMedGoogle Scholar
  24. 24.
    Geerlings A, Lopez-Corcuera B, Aragon C (2000) Characterization of the interactions between the glycine transporters GLYT1 and GLYT2 and the SNARE protein syntaxin 1A. FEBS Lett 470:51–54CrossRefPubMedGoogle Scholar
  25. 25.
    Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390PubMedGoogle Scholar
  26. 26.
    Grånäs C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003) N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278:4990–5000CrossRefPubMedGoogle Scholar
  27. 27.
    Gu HH, Wu X, Giros B, Caron MG, Caplan MJ, Rudnick G (2001) The NH2-terminus of norepinephrine transporter contains a basolateral localization signal for epithelial cells. Mol Biol Cell 12:3797–807PubMedGoogle Scholar
  28. 28.
    Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306PubMedGoogle Scholar
  29. 29.
    Hanley JG, Jones EM, Moss SJ (2000) GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. J Biol Chem 275:840–846CrossRefPubMedGoogle Scholar
  30. 30.
    Hastrup H, Karlin A, Javitich JA (2001) Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci USA 98:10055–10060CrossRefPubMedGoogle Scholar
  31. 31.
    Iyer GS, Krahe R, Goodwin LA, Doggett NA, Siciliano MJ, Funanage VL, Proujansky R (1996) Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34:143–146PubMedGoogle Scholar
  32. 32.
    Jayanthi LD, Wilson JJ, Montalvo J, DeFelice LJ (2000) Differential regulation of mammalian brain-specific proline transporter by calcium and calcium-dependent protein kinases. Br J Pharmacol 129:465–470PubMedGoogle Scholar
  33. 33.
    Jess U, Far OEI, Kirsch J, Betz H (2002) Interaction of the C-terminal region of the rat serotonin transporter with MacMARCKS modulates 5-HT uptake regulation by protein kinase C. Biochem Biophys Res Commun 294:272–279CrossRefPubMedGoogle Scholar
  34. 34.
    Kamdar G, Penado KMY, Rudnick G, Stephan MM (2001) Functional role of critical strip residues in transmembrane span 7 of the serotonin transporter. J Biol Chem 276:4038–4045CrossRefPubMedGoogle Scholar
  35. 35.
    Kang YS, Ohtsuki S, Takanaga H, Tomi M, Hosoya K, Terasaki T (2002) Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine, and hypertonicity. J Neurochem 83:1188–1195CrossRefPubMedGoogle Scholar
  36. 36.
    Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced DA efflux: a voltage sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070–12077CrossRefPubMedGoogle Scholar
  37. 37.
    Kilic F, Rudnick G (2000) Oligomerization of the serotonin transporter and its functional consequences. Proc Natl Acad Sci USA 97:3106–3111PubMedGoogle Scholar
  38. 38.
    Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA 89:7782–7785PubMedGoogle Scholar
  39. 39.
    Kwon HM (1996) Transcriptional regulation of the betaine/gamma-aminobutyric acid transporter by hypertonicity. Biochem Soc Trans 24:853–856PubMedGoogle Scholar
  40. 40.
    Lee FJS, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926CrossRefPubMedGoogle Scholar
  41. 41.
    Lesch KP, Mossner R (1998) Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol Psychiatry 44:179–192Google Scholar
  42. 42.
    Lin Z, Wang W, Uhl GR (2000) Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains. Mol Pharmacol 58:1581–1592PubMedGoogle Scholar
  43. 43.
    Little KY, Elmer LW, Zhong H, Scheys JO, Zhang L (2002) Cocaine induction of dopamine transporter trafficking to the plasma membrane. Mol Pharmaocl 61:436–445CrossRefGoogle Scholar
  44. 44.
    Loland CJ, Norregaard L, Litman T, Gether U (2002) Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc Natl Acad Sci USA 99:1683–1688CrossRefPubMedGoogle Scholar
  45. 45.
    Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM (2000) Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem 275:37414–37422PubMedGoogle Scholar
  46. 46.
    Maiya R, Buck KJ, Harris RA, Mayfield RD (2002) Ethanol-sensitive sites on the human dopamine transporter. J Biol Chem 277:30724–30729CrossRefPubMedGoogle Scholar
  47. 47.
    Morrow JA, Collie IT, Dunbar DR, Walker GB, Shahid M, Hill DR (1998) Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome. FEBS Lett 439:334–340CrossRefPubMedGoogle Scholar
  48. 48.
    Nash SR, Giros B, Kingsmore SF, Rochelle JM, Suter ST, Gregor P, Seldin MF, Caron MG (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2:165–174PubMedGoogle Scholar
  49. 49.
    Nelson N (1998) The family of Na+/Cl neurotransmitter transporters. J Neurochem 71:1785–1803PubMedGoogle Scholar
  50. 50.
    Nelson H, Mandiyan S, Nelson N (1990) Cloning of the human brain GABA transporter. FEBS Lett 269:181–184CrossRefPubMedGoogle Scholar
  51. 51.
    Olivier B, Soudijn W, Wijngaarden I van (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res 54:59–119PubMedGoogle Scholar
  52. 52.
    Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354PubMedGoogle Scholar
  53. 53.
    Patrylo PR, Spencer DD, Williamson A (2001) GABA uptake and heterotransport are impaired in the dentate gyrus of epileptic rats and humans with temporal lobe sclerosis. J Neurophysiol 85:1533–1542PubMedGoogle Scholar
  54. 54.
    Poyotos I, Ruberti F, Martinez-Maza R, Gimenez C, Dotti CG, Zafra F (2000) Polarized distribution of glycine transporter isoforms in epithelial and neuronal cells. Mol Cell Neurosci 15:99–111CrossRefPubMedGoogle Scholar
  55. 55.
    Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporters: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546PubMedGoogle Scholar
  56. 56.
    Ramamoorthy S, Leibach FH, Mahesh VB, Han H, Yang-Feng T, Blakely RD, Ganapathy V (1994) Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J 300:893–900PubMedGoogle Scholar
  57. 57.
    Rasola A, Galietta LJ. Barone V, Romeo G, Bagnasco S (1995) Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett 373:229–233CrossRefPubMedGoogle Scholar
  58. 58.
    Roubert C, Cox PJ, Bruss M, Hamon M, Bonisch H, Giros B (2001) Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem 276:8254–8260CrossRefPubMedGoogle Scholar
  59. 59.
    Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144:249–263PubMedGoogle Scholar
  60. 60.
    Saier MH Jr (1999) A functional-phylogenetic system for the classification of transport proteins. J Cell Biochem 32-33:84–94Google Scholar
  61. 61.
    Salomons GS, Dooren SJ van, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68:1497–1500CrossRefPubMedGoogle Scholar
  62. 62.
    Saransaari P, Oja SS (1999) Taurine release modified by nitric oxide-generating compounds in the developing and adult mouse hippocampus. Neuroscience 89:1103–1111CrossRefPubMedGoogle Scholar
  63. 63.
    Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, lamb M E, Leeb-Lundberg LMF, Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 97:6850–6855CrossRefPubMedGoogle Scholar
  64. 64.
    Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer E, Sitte HH (2001) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276:3805–3810CrossRefPubMedGoogle Scholar
  65. 65.
    Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420:211–232CrossRefPubMedGoogle Scholar
  66. 66.
    Schwartz EA (1987) Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science 238:350–355PubMedGoogle Scholar
  67. 67.
    Shafqat S, Velaz-Faircloth M, Henzi VA, Whitney KD, Yang-Feng TL, Seldin MF, Fremeau RT (1995) Human brain-specific L-proline transporter: molecular cloning, functional expression, and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol 48:219–229PubMedGoogle Scholar
  68. 68.
    Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549PubMedGoogle Scholar
  69. 69.
    Sloan JL, Mager S (1999) Cloning and functional expression of a human Na+ and Cl-dependent neutral and cationic amino acid transporter B0+. J Biol Chem 274:23740–23745PubMedGoogle Scholar
  70. 70.
    Sloan JL, Grubb BR, Mager S (2003) Expression of the amino acid transporter ATB0+ in lung: possible role in luminal protein removal. Am J Physiol 284:L39–L49Google Scholar
  71. 71.
    Soudijn W, Wijngaarden I van (2000) The GABA transporter and its inhibitors. Curr Med Chem 7:1063–1079PubMedGoogle Scholar
  72. 72.
    Sturman JA (1990) Taurine deficiency. Prog Clin Biol Res 351:385–395PubMedGoogle Scholar
  73. 73.
    Sundman-Eriksson I, Blennow K, Davidsson P, Dandenell AK, Marcusson J (2002) Increased [3H]tiagabine binding to GAT-1 in the cingulate cortex in schizophrenia. Neuropsychobiology 45:7-11CrossRefGoogle Scholar
  74. 74.
    Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, Quick MW, Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697–709PubMedGoogle Scholar
  75. 75.
    Supplisson S, Roux MJ (2002) Why glycine transporters have different stoichiometries. FEBS Lett 529:93–101CrossRefPubMedGoogle Scholar
  76. 76.
    Takeuchi K, Toyohara H, Sakaguchi M (2000) A hyperosmotic stress-induced mRNA of carp cell encodes Na+- and Cl-dependent high affinity taurine transporter. Biochim Biophys Acta 1464:219–230CrossRefPubMedGoogle Scholar
  77. 77.
    Torres GE, Yao W-D, Mohn AR, Quan H, Kim K-M, Levey AI, Staudinger J, Caron MG (2001) Functional interaction between monoamine plasma membrane transporters and synaptic PDZ domain-containing protein PICK1. Neuron 30:121–134PubMedGoogle Scholar
  78. 78.
    Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao W-D, Caron MG (2003) Oligomerization and trafficking of the human dopamine transporter. J Biol Chem 278:2731–2739CrossRefPubMedGoogle Scholar
  79. 79.
    Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7:21–26CrossRefPubMedGoogle Scholar
  80. 80.
    Van Winkle LJ (2001) Amino acid transport regulation and early embryo development. Biol Reprod 1:1–12Google Scholar
  81. 81.
    Whitworth TL, Quick MW (2001) Substrate-induced regulation of γ-aminobutyric acid (GABA) transporter trafficking requires tyrosine phosphorylation. J Biol Chem 276:42932–42937CrossRefPubMedGoogle Scholar
  82. 82.
    Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3:465–471CrossRefPubMedGoogle Scholar
  83. 83.
    Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Nian-Hang Chen
    • 2
  • Maarten E. A. Reith
    • 2
  • Michael W. Quick
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of Southern California, HNB 228Los AngelesUSA
  2. 2.Department of Biomedical and Therapeutic SciencesUniversity of Illinois College of MedicinePeoriaUSA

Personalised recommendations