Advertisement

Pflügers Archiv

, Volume 446, Issue 4, pp 401–409 | Cite as

(Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6

  • Tom Nijenhuis
  • Joost G. J. Hoenderop
  • Bernd Nilius
  • René J. M. BindelsEmail author
Invited Review

Abstract

The epithelial Ca2+ channels TRPV5 and TRPV6 constitute the apical Ca2+ entry mechanism in active Ca2+ (re)absorption. These two members of the superfamily of transient receptor potential (TRP) channels were cloned from the vitamin-D-responsive epithelia of kidney and small intestine and subsequently identified in other tissues such as bone, pancreas and prostate. These channels are regulated by vitamin D as exemplified in animal models of vitamin-D-deficiency rickets. In addition, the epithelial Ca2+ channels might be involved in the multifactorial pathogenesis of disorders ranging from idiopathic hypercalciuria, stone disease and postmenopausal osteoporosis. This review highlights the emerging (patho)physiological implications of these epithelial Ca2+ channels.

Keywords

Calcium transport ECaC1 ECaC2 Estrogen Hypercalciuria  Vitamin D 

Notes

Acknowledgements

This work was supported in part by grants from the Dutch Kidney Foundation (C10.1881), the Dutch Organization of Scientific research (Zon-Mw 016.006.001, Zon-Mw 902.18.298, NWO-ALW 805.09.042 and NWO-ALW 810.38.004), the Belgian Federal Government, the Flemish Government and the Onderzoeksraad KU Leuven (GOA 99/07, F.W.O. G.0237.95, F.W.O. G.0214.99, F.W.O. G. 0136.00, F.W.O. 0172.03) and a grant from the "Alphonse and Jean Forton–Koning Boudewijn Stichting" (R7115 B0).

References

  1. 1.
    Arjmandi BH, Hollis BW, Kalu DN (1994) In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats. Bone Miner 26:181–189PubMedGoogle Scholar
  2. 2.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedGoogle Scholar
  3. 3.
    Brenner BM (ed) (1996) Brenner and Rector's the kidney. WB Saunders company, Philadelphia 5th:Google Scholar
  4. 4.
    Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297PubMedGoogle Scholar
  5. 5.
    Colin EM, Van Den Bemd GJ, Van Aken M, Christakos S, De Jonge HR, Deluca HF, Prahl JM, Birkenhager JC, Buurman CJ, Pols HA, Van Leeuwen JP (1999) Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 14:57–64PubMedGoogle Scholar
  6. 6.
    Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235:F492–F506PubMedGoogle Scholar
  7. 7.
    Cruz DN, Simon DB, Nelson-Williams C, Farhi A, Finberg K, Burleson L, Gill JR, Lifton RP (2001) Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension 37:1458–1464PubMedGoogle Scholar
  8. 8.
    Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D3-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141PubMedGoogle Scholar
  9. 9.
    Ellison DH (2000) Divalent cation transport by the distal nephron: insights from Bartter's and Gitelman's syndromes. Am J Physiol 279:F616–F625Google Scholar
  10. 10.
    Fleet JC, Eksir F, Hance KW, Wood RJ (2002) Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol 283:G618–G625Google Scholar
  11. 11.
    Friedman PA (1998) Codependence of renal calcium and sodium transport. Annu Rev Physiol 60:179–197CrossRefPubMedGoogle Scholar
  12. 12.
    Friedman PA, Bushinsky DA (1999) Diuretic effects on calcium metabolism. Semin Nephrol 19:551–556PubMedGoogle Scholar
  13. 13.
    Friedman PA, Gesek FA (1995) Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev 75:429–471PubMedGoogle Scholar
  14. 14.
    Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60:1002–1008PubMedGoogle Scholar
  15. 15.
    Heller HJ, Sakhaee K, Moe OW, Pak CY (2002) Etiological role of estrogen status in renal stone formation. J Urol 168:1923–1927PubMedGoogle Scholar
  16. 16.
    Hoenderop JG, Dardenne O, van Abel M, van der Kemp AW, Van Os CH, St-Arnaud R, Bindels RJ (2002) Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J 16:1398–1406Google Scholar
  17. 17.
    Hoenderop JG, De Pont JJ, Bindels RJ, Willems PH (1999) Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester- insensitive PKC isotype. Kidney Int 55:225–233CrossRefPubMedGoogle Scholar
  18. 18.
    Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ (2000) Localization of the epithelial Ca2+ channel in rabbit kidney and intestine. J Am Soc Nephrol 11:1171–1178PubMedGoogle Scholar
  19. 19.
    Hoenderop JG, Muller D, Suzuki M, van Os CH, Bindels RJ (2000) Epithelial calcium channel: gate-keeper of active calcium reabsorption. Curr Opin Nephrol Hypertens 9:335–340PubMedGoogle Scholar
  20. 20.
    Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH, Bindels RJ (2001) Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 12:1342–1349PubMedGoogle Scholar
  21. 21.
    Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanisms of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549PubMedGoogle Scholar
  22. 22.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378PubMedGoogle Scholar
  23. 23.
    Hoenderop JG, van der Kemp AW, Hartog A, van Os CH, Willems PH, Bindels RJ (1999) The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. Biochem Biophys Res Commun 261:488–492PubMedGoogle Scholar
  24. 24.
    Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, Nilius B (2001) Function and expression of the epithelial Ca2+ channel family: comparison of the mammalian epithelial Ca2+ channel 1 and 2. J Physiol (Lond) 537:747–761Google Scholar
  25. 25.
    Hoenderop JG, Voets T, Hoefs S, Weidema AF, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6. EMBO J 22:776–785Google Scholar
  26. 26.
    Hoenderop JG, Willems PH, Bindels RJ (2000) Toward a comprehensive molecular model of active calcium reabsorption. Am J Physiol 278:F352–F360Google Scholar
  27. 27.
    Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818PubMedGoogle Scholar
  28. 28.
    Ishida H, Seino Y, Seino S, Tsuda K, Takemura J, Nishi S, Ishizuka S, Imura H (1983) Effect of 1,25-dihydroxyvitamin D3 on pancreatic B and D cell function. Life Sci 33:1779–1786CrossRefPubMedGoogle Scholar
  29. 29.
    James SY, Mercer E, Brady M, Binderup L, Colston KW (1998) EB1089, a synthetic analogue of vitamin D, induces apoptosis in breast cancer cells in vivo and in vitro. Br J Pharmacol 125:953–962PubMedGoogle Scholar
  30. 30.
    Janssen SW, Hoenderop JG, Hermus AR, Sweep CG, Martens GJ, Bindels RJ (2002) Expression of the novel epithelial Ca2+ channel ECaC in rat pancreatic islets. J Histochem Cytochem 50:789–798PubMedGoogle Scholar
  31. 31.
    Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacock M, Johnston CC, Foroud T (2000) Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85:3116–3120PubMedGoogle Scholar
  32. 32.
    Lemmink HH, van den Heuvel LP, van Dijk HA, Merkx GF, Smilde TJ, Taschner PE, Monnens LA, Hebert SC, Knoers NV (1996) Linkage of Gitelman syndrome to the thiazide-sensitive sodium-chloride cotransporter gene with identification of mutations in Dutch families. Pediatr Nephrol 10:403–407CrossRefPubMedGoogle Scholar
  33. 33.
    Lerolle N, Coulet F, Lantz B, Paillard F, Houillier P, Soubrier F, Gattegno B, Jeunemaitre X, Ronco P, Rondeau E (2001) No evidence for point mutations of the calcium-sensing receptor in familial idiopathic hypercalciuria. Nephrol Dial Transplant 16:2317–2322CrossRefPubMedGoogle Scholar
  34. 34.
    Li YC, Bolt MJ, Cao LP, Sitrin MD (2001) Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol 281:E558–E564PubMedGoogle Scholar
  35. 35.
    Liu G, Oettel K, Ripple G, Staab MJ, Horvath D, Alberti D, Arzoomanian R, Marnocha R, Bruskewitz R, Mazess R, Bishop C, Bhattacharya A, Bailey H, Wilding G (2002) Phase I trial of 1alpha-hydroxyvitamin D2 in patients with hormone refractory prostate cancer. Clin Cancer Res 8:2820–2827PubMedGoogle Scholar
  36. 36.
    Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Organization of the mouse distal nephron: distributions of transcellular calcium and sodium transport pathways. Am J Physiol 281:F1021–F1027Google Scholar
  37. 37.
    Mastroianni N, Bettinelli A, Bianchetti M, Colussi G, De Fusco M, Sereni F, Ballabio A, Casari G (1996) Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet 59:1019–1026PubMedGoogle Scholar
  38. 38.
    Miller GJ, Stapleton GE, Ferrara JA, Lucia MS, Pfister S, Hedlund TE, Upadhya P (1992) The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha,25-dihydroxyvitamin D3. Cancer Res 52:515–520PubMedGoogle Scholar
  39. 39.
    Monroy A, Plata C, Hebert SC, Gamba G (2000) Characterization of the thiazide-sensitive Na+-Cl cotransporter: a new model for ions and diuretics interaction. Am J Physiol 279:F161–F169Google Scholar
  40. 40.
    Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598PubMedGoogle Scholar
  41. 41.
    Muller D, Hoenderop JG, Meij IC, van den Heuvel LP, Knoers NV, den Hollander AI, Eggert P, Garcia-Nieto V, Claverie-Martin F, Bindels RJ (2000) Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1). Genomics 67:48–53PubMedGoogle Scholar
  42. 42.
    Muller D, Hoenderop JG, Merkx GF, van Os CH, Bindels RJ (2000) Gene structure and chromosomal mapping of human epithelial calcium channel. Biochem Biophys Res Commun 275:47–52PubMedGoogle Scholar
  43. 43.
    Muller D, Hoenderop JG, Vennekens R, Eggert P, Harangi F, Mehes K, Garcia-Nieto V, Claverie-Martin F, Van Os C, Nilius B, Bindels RJ (2002) Epithelial Ca2+ channel (ECaC) in autosomal dominant idiopathic hypercalciuria. Nephrol Dial Transplant 17:1614–1620PubMedGoogle Scholar
  44. 44.
    Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23:173–180PubMedGoogle Scholar
  45. 45.
    Nilius B, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Weidema AF, Droogmans G, Bindels RJ (2002) Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and 6): Role of the intracellular loop located between transmembrane segment 2 and 3. J Biol Chem 277:30852–30858PubMedGoogle Scholar
  46. 46.
    Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG (1991) Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72:401–407PubMedGoogle Scholar
  47. 47.
    Norman AW, Frankel JB, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825PubMedGoogle Scholar
  48. 48.
    Okamoto Y, Ishida H, Taminato T, Tsuji K, Kurose T, Tsuura Y, Kato S, Imura H, Seino Y (1992) Role of cytosolic Ca2+ in impaired sensitivity to glucose of rat pancreatic islets exposed to high glucose in vitro. Diabetes 41:1555–1561PubMedGoogle Scholar
  49. 49.
    Okamoto Y, Ishida H, Tsuura Y, Yasuda K, Kato S, Matsubara H, Nishimura M, Mizuno N, Ikeda H, Seino Y (1995) Hyperresponse in calcium-induced insulin release from electrically permeabilized pancreatic islets of diabetics GK rats and its defective augmentation by glucose. Diabetologia 38:772–778CrossRefPubMedGoogle Scholar
  50. 50.
    Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11PubMedGoogle Scholar
  51. 51.
    Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D (2001) Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503CrossRefPubMedGoogle Scholar
  52. 52.
    Parks JH, Coe FL (1986) A urinary calcium-citrate index for the evaluation of nephrolithiasis. Kidney Int 30:85–90PubMedGoogle Scholar
  53. 53.
    Peehl DM, Skowronski RJ, Leung GK, Wong ST, Stamey TA, Feldman D (1994) Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res 54:805–810PubMedGoogle Scholar
  54. 54.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746PubMedGoogle Scholar
  55. 55.
    Peng JB, Chen XZ, Berger UV, Weremowicz S, Morton CC, Vassilev PM, Brown EM, Hediger MA (2000) Human calcium transport protein CaT1. Biochem Biophys Res Commun 278:326–332CrossRefPubMedGoogle Scholar
  56. 56.
    Peng JB, Hediger MA (2002) A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 11:555–561CrossRefPubMedGoogle Scholar
  57. 57.
    Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734PubMedGoogle Scholar
  58. 58.
    Petrucci M, Scott P, Ouimet D, Trouve ML, Proulx Y, Valiquette L, Guay G, Bonnardeaux A (2000) Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int 58:38–42CrossRefPubMedGoogle Scholar
  59. 59.
    Picotto G, Massheimer V, Boland R (1996) Acute stimulation of intestinal cell calcium influx induced by 17 beta-estradiol via the cAMP messenger system. Mol Cell Endocrinol 119:129–134CrossRefPubMedGoogle Scholar
  60. 60.
    Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, Hulin P, Benque-Blanchet F, Silve C, Grandchamp B, Friedlander G (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 347:983–991Google Scholar
  61. 61.
    Prince RL (1994) Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr Rev 15:301–309PubMedGoogle Scholar
  62. 62.
    Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM (1991) Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 325:1189–1195Google Scholar
  63. 63.
    Rabinovitch A, Suarez-Pinzon WL, Sooy K, Strynadka K, Christakos S (2001) Expression of calbindin-D28K in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology 142:3649–3655PubMedGoogle Scholar
  64. 64.
    Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, Pak CY (2002) Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 87:1476–1485PubMedGoogle Scholar
  65. 65.
    Reed BY, Heller HJ, Gitomer WL, Pak CY (1999) Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J Clin Endocrinol Metab 84:3907–3913PubMedGoogle Scholar
  66. 66.
    Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320:980–991Google Scholar
  67. 67.
    Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313PubMedGoogle Scholar
  68. 68.
    Roe MW, Lancaster ME, Mertz RJ, Worley JF, 3rd, Dukes ID (1993) Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose. J Biol Chem 268:9953–9956PubMedGoogle Scholar
  69. 69.
    Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170CrossRefPubMedGoogle Scholar
  70. 70.
    Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J Biol Chem 273:29150–29155PubMedGoogle Scholar
  71. 71.
    Scott P, Ouimet D, Proulx Y, Trouve ML, Guay G, Gagnon B, Valiquette L, Bonnardeaux A (1998) The 1 alpha-hydroxylase locus is not linked to calcium stone formation or calciuric phenotypes in French-Canadian families. J Am Soc Nephrol 9:425–432PubMedGoogle Scholar
  72. 72.
    Scott P, Ouimet D, Valiquette L, Guay G, Proulx Y, Trouve ML, Gagnon B, Bonnardeaux A (1999) Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol 10:1007–1013PubMedGoogle Scholar
  73. 73.
    Soucie JM, Thun MJ, Coates RJ, McClellan W, Austin H (1994) Demographic and geographic variability of kidney stones in the United States. Kidney Int 46:893–899PubMedGoogle Scholar
  74. 74.
    Stanton BA (1990) Cellular actions of thiazide diuretics in the distal tubule. J Am Soc Nephrol 1:832–836PubMedGoogle Scholar
  75. 75.
    Tenenhouse HS, Gauthier C, Martel J, Hoenderop JG, Hartog A, Meyer MH, Meyer RH Jr, Bindels RJ (2002) Na/Pi cotransporter (Npt2) gene disruption increases duodenal calcium absorption and expression of epithelial calcium channel 1 and 2. Pflugers Arch 444:670–676PubMedGoogle Scholar
  76. 76.
    Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol 283:C651–C672Google Scholar
  77. 77.
    Van Abel M, Hoenderop JG, Dardenne O, St-Arnaud R, Van Os C, van Leeuwen JP, Bindels RJ (2002) 1,25(OH)2D3-independent stimulatory effect of estrogen on the expression of ECaC1 in kidney. J Am Soc Nephrol 13:2102–2109PubMedGoogle Scholar
  78. 78.
    van Cromphaut S, Dewerchin M, Hoenderop JG, Stockmans I, van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G (2001) Active duodenal calcium absorption in vitamin D receptor-knock out mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329PubMedGoogle Scholar
  79. 79.
    Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275:3963–3969PubMedGoogle Scholar
  80. 80.
    Vezzoli G, Tanini A, Ferrucci L, Soldati L, Bianchin C, Franceschelli F, Malentacchi C, Porfirio B, Adamo D, Terranegra A, Falchetti A, Cusi D, Bianchi G, Brandi ML (2002) Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol 13:2517–2523PubMedGoogle Scholar
  81. 81.
    Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174CrossRefPubMedGoogle Scholar
  82. 82.
    Weber K, Erben RG, Rump A, Adamski J (2001) Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289:1287–1294PubMedGoogle Scholar
  83. 83.
    Wernyj RP, Mattson MP, Christakos S (1999) Expression of calbindin-D28K in C6 glial cells stabilizes intracellular calcium levels and protects against apoptosis induced by calcium ionophore and amyloid beta-peptide. Brain Res Mol Brain Res 64:69–79CrossRefPubMedGoogle Scholar
  84. 84.
    Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468CrossRefPubMedGoogle Scholar
  85. 85.
    Wood RJ, Tchack L, Taparia S (2001) 1,25-Dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the Caco-2 human intestinal cell line. BMC Physiol 1:11CrossRefPubMedGoogle Scholar
  86. 86.
    Young MM, Nordin BE (1969) The effect of the natural and artificial menopause on bone density and fracture. Proc R Soc Med 62:242PubMedGoogle Scholar
  87. 87.
    Zerwekh JE, Hughes MR, Reed BY, Breslau NA, Heller HJ, Lemke M, Nasonkin I, Pak CY (1995) Evidence for normal vitamin D receptor messenger ribonucleic acid and genotype in absorptive hypercalciuria. J Clin Endocrinol Metab 80:2960–2965PubMedGoogle Scholar
  88. 88.
    Zhao XY, Ly LH, Peehl DM, Feldman D (1997) 1alpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Endocrinology 138:3290–3298PubMedGoogle Scholar
  89. 89.
    Zhao XY, Peehl DM, Navone NM, Feldman D (2000) 1alpha,25-dihydroxyvitamin D3 inhibits prostate cancer cell growth by androgen-dependent and androgen-independent mechanisms. Endocrinology 141:2548–2556PubMedGoogle Scholar
  90. 90.
    Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764PubMedGoogle Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  • Tom Nijenhuis
    • 2
  • Joost G. J. Hoenderop
    • 2
  • Bernd Nilius
    • 3
  • René J. M. Bindels
    • 1
    • 2
    Email author
  1. 1.M850 Room 07.048Centrale Ontvangst GoederenGA NijmegenThe Netherlands
  2. 2.Department of Cell Physiology, Nijmegen Center for Molecular Life SciencesUniversity Medical Center NijmegenHB NijmegenThe Netherlands
  3. 3.Department of Physiology, Campus GasthuisbergKU LeuvenBelgium

Personalised recommendations