Pflügers Archiv

, Volume 446, Issue 1, pp 106–115 | Cite as

Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney

  • I. Ohkido
  • H. Segawa
  • R. Yanagida
  • M. Nakamura
  • K. Miyamoto
Ion Channels, Transporters

Abstract

We have demonstrated previously that the type-IIc Na/Pi cotransporter is a growth-related renal Na/Pi cotransporter that is highly expressed in kidney of the weaning rat. In the present study, we investigated type-IIc Na/Pi cotransporter function further by cloning the mouse gene and characterizing the corresponding protein. The mouse type-IIc transporter amino acid sequence shows a high degree of similarity to the human (86%) and rat (95%) type-IIc Na/Pi-cotransporters. The mouse gene contained 14 exons and mapped to chromosome 2. The DNA sequence upstream from exon 1 is GC rich. The upstream region does not contain an apparent TATA box, but does contain two dietary Pi-responsive elements, which are potential binding sites for the transcription factor µE3 (TFE3). Microinjection of mouse type-IIc cRNA into Xenopus oocytes demonstrated sodium-dependent Pi cotransport activity. The affinity for Pi was about 200 µM in 100 mM Na. Feeding adult mice fed a low-Pi diet increased the expression of type-IIc protein in the apical membrane of renal proximal tubular cells. Hybrid depletion studies suggested that the type-IIc transporter contributes to about 30% of Na/Pi cotransport in the kidney of adult mice fed a low-Pi diet. The present study suggests that the type-IIc Na/Pi cotransporter is a functional of renal Pi transporter in adult mice fed a low-Pi diet.

Keywords

Phosphate Transporter Weaning Regulation Proximal tubules 

Notes

Acknowledgements

This work was supported by Grant 11557202 (K.M.) from the Ministry of Education, Science, Sports and Culture of Japan. We thank Kayo Yano, Ritsuko Saito, Keiko Shinohara, Noriko Yata and Ichiro Kaneko. The mouse osteoclast mRNA were a kind gift from Dr. Amano, Showa University, Tokyo, Japan. The nucleotide sequences reported in this paper have been submitted to the GenBank/EBI Data Bank with accession numbers AB054999 and AB080121-AB080134.

References

  1. 1.
    Hartmann CM, Wagner CA, Busch AE, Markovich D, Biber J, Lang F, Murer H (1995) Transport Characteristics of a murine renal Na/Pi-cotransporter. Pflugers Arch 430:830–836PubMedGoogle Scholar
  2. 2.
    Hartmann CM, Hewson AS, Kos CH, Hilfiker H, Soumounou Y, Murer H, Tenenhouse HS (1996) Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2). Proc Natl Acad Sci USA 93:7409–7414CrossRefPubMedGoogle Scholar
  3. 3.
    Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569PubMedGoogle Scholar
  4. 4.
    Katai K, Segawa H, Haga H, Morita K, Arai H, Tatsumi S, Taketani Y, Miyamoto K, Hisano S, Fukui Y, Takeda, E (1997) Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaP(i)-2) in rat kidney. J Biochem 121:50–55PubMedGoogle Scholar
  5. 5.
    Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, Kaneko Y, Harashima S, Takeda E (1999) Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem 274:28256–28263CrossRefPubMedGoogle Scholar
  6. 6.
    Kohler K, Forster IC, Stange G, Biber J, Murer H (2002) Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol 282:F687–F696Google Scholar
  7. 7.
    Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J. (1994) Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Physiol 267:F900–F908PubMedGoogle Scholar
  8. 8.
    Luckey TD, Mende TJ, Pleasants J (1954) The physical and chemical characterization of rat's milk. J. Nutr 54:345–358Google Scholar
  9. 9.
    Magagnin D, Bertran J, Werner A, Markovich D, Biber J, Palacin M, Murer H (1992) Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes. J Biol Chem 262:15384–15390Google Scholar
  10. 10.
    Miyamoto K, Segawa H, Morita K, Nii T, Tatsumi S, Taketani Y, Takeda E (1997) Relative contributions of Na+-dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis. Biochem J 327:735–739PubMedGoogle Scholar
  11. 11.
    Murer H, Hernando N, Forster N, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409PubMedGoogle Scholar
  12. 12.
    Nakagawa N, Arab N, Ghishan FK (1991) Characterization of the defect in the Na+-phosphate transporter in vitamin D-resistant hypophosphatemic mice. J Biol Chem 266:13616–13620PubMedGoogle Scholar
  13. 13.
    Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–197451PubMedGoogle Scholar
  14. 14.
    Segawa H, Kaneko I, Takahashi A, Ito M, Kuwahata M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672CrossRefPubMedGoogle Scholar
  15. 15.
    Spitzer A, Barac-Nieto M (2001) Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol 16:763–771CrossRefPubMedGoogle Scholar
  16. 16.
    Taketani Y, Miyamoto K, Tanaka K, Katai K, Chikamori M, Tatsumi S, Segawa H, Yamamoto H, Morita K, Takeda E (1997) Gene structure and functional analysis of the human Na+/phosphate co-transporter. Biochem J 324:927–934PubMedGoogle Scholar
  17. 17.
    Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, Yamamoto H, Iemori Y, Tatsumi S, Tsugawa N, Okano T, Kobayashi T, Miyamoto K, Takeda E (1998) Regulation of type II renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NaPi-3 gene. J Biol Chem 273:14575–14581PubMedGoogle Scholar
  18. 18.
    Tondrawi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1 Nature 386:81–84Google Scholar
  19. 19.
    Traebert M, Lotscher M, Aschwanden R, Ritthaler T, Biber J, Murer H, Kaissling B (1999) Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney. J Am Soc Nephrol 10:1407–1415PubMedGoogle Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  • I. Ohkido
    • 1
    • 2
  • H. Segawa
    • 1
  • R. Yanagida
    • 1
  • M. Nakamura
    • 1
  • K. Miyamoto
    • 1
  1. 1.Department of Nutrition, School of MedicineTokushima UniversityTokushima CityJapan
  2. 2.Department of Internal Medicine, Division of Nephrology and HypertensionJikei University School of MedicineTokyoJapan

Personalised recommendations