Langenbeck's Archives of Surgery

, Volume 404, Issue 5, pp 517–525 | Cite as

Liquid biopsy for the detection and management of surgically resectable tumors

  • Barbara Aldana Blanco
  • Christopher L. WolfgangEmail author
Review Article



Traditional biopsies have numerous limitations in the developing era of precision medicine, with cancer treatment that relies on biomarkers to guide therapy. Tumor heterogeneity raises the potential for sampling error with the use of traditional biopsy of the primary tumor. Moreover, tumors continuously evolve as new clones arise in the natural course of the disease and under the pressure of treatment. Since traditional biopsy is invasive, it is neither feasible nor practical to perform serial biopsies to guide treatment in real time.


The current manuscript will review the most commonly used types of liquid biopsy and how these apply to surgical patients in terms of diagnosis, prediction of outcome, and guiding therapy.


Liquid biopsy has the potential to overcome many of the limitations of traditional biopsy as a highly tailored, minimally invasive, and cost-effective method to screen and monitor response to treatment. However, many challenges still need to be overcome before liquid biopsy becomes a reliable and widely available option.


Cancer Liquid biopsy Traditional biopsy Circulating tumor cells Circulating tumor DNA Precision Medicine 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Literature review article—not applicable.

Informed consent

Literature review article—not applicable.


  1. 1.
    Hirsch FR, Franklin WA, Veve R, Varella-Garcia M, Bunn PA (2002) HER2/neu expression in malignant lung tumors. Semin Oncol 29(1 Suppl 4):51–58 Accessed 27 Oct 2018CrossRefPubMedGoogle Scholar
  2. 2.
    Chand P, Anubha G, Singla V, Rani N (2018) Evaluation of immunohistochemical profile of breast cancer for prognostics and therapeutic use. Niger J Surg 24(2):100. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17(9):507–522. CrossRefPubMedGoogle Scholar
  4. 4.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R (2014) Identification of doublestranded genomic dna spanning all chromosomes with mutated KRAS and P53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mandel PMP (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142(3–4):241–243PubMedGoogle Scholar
  7. 7.
    Mouliere F, Rosenfeld N (2015) Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci 112:3178–3179. CrossRefPubMedGoogle Scholar
  8. 8.
    Diaz LA, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eun Jin C, Koo B, Yoon Lee T et al (2018) Simple and low-cost sampling of cell-free nucleic acids from blood plasma for rapid and sensitive detection of circulating tumor DNA.
  10. 10.
    Pantel K, Speicher MR (2016) The biology of circulating tumor cells. Oncogene. 35(10):1216–1224. CrossRefPubMedGoogle Scholar
  11. 11.
    Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong ASC, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 497(7447):108–112. CrossRefPubMedGoogle Scholar
  12. 12.
    Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krishnamurthy N, Spencer E, Torkamani A, Nicholson L Clinical medicine liquid biopsies for cancer: coming to a patient near you.
  14. 14.
    Woo D, Yu M (2018) Circulating tumor cells as “liquid biopsies” to understand cancer metastasis. Transl Res 201:128–135. CrossRefPubMedGoogle Scholar
  15. 15.
    Li Y, Wu S, Bai F (2017) Molecular characterization of circulating tumor cells-from bench to bedside. Semin Cell Dev BiolGoogle Scholar
  16. 16.
    Ashworth TR (1869) A case of Cancer in which cells similar to those in the tumors were seen in the blood after death. Australas Med J 14:146–149Google Scholar
  17. 17.
    Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631. CrossRefPubMedGoogle Scholar
  18. 18.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science (80- ). 339(6119):580–584. CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. CrossRefPubMedGoogle Scholar
  21. 21.
    Riethdorf S, Fritsche H, Müller V et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13:920–928. CrossRefPubMedGoogle Scholar
  22. 22.
    Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.; 2004. CrossRefGoogle Scholar
  23. 23.
    Saucedo-Zeni N, Mewes S, Niestroj R et al (2012) A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol 41(4):1241–1250. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arya SK, Lim B, Rahman ARA (2013) Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13(11):1995–2027. CrossRefPubMedGoogle Scholar
  25. 25.
    Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, Lim WT, Han J, Bhagat AAS, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3(1):1259. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gupta V, Jafferji I, Garza M, Melnikova VO, Hasegawa DK, Pethig R, Davis DW (2012) ApoStream ™ , a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics. 6(2):024133. CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic, label-free enrichment of prostate Cancer cells in blood based on Acoustophoresis. Anal Chem 84(18):7954–7962. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. CrossRefPubMedGoogle Scholar
  29. 29.
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SSF, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM (2014) Highly multiplexed subcellular RNA sequencing in situ. Science (80- ). 343(6177):1360–1363. CrossRefGoogle Scholar
  30. 30.
    Fan HC, Fu GK, Fodor SPA (2015) Combinatorial labeling of single cells for gene expression cytometry. Science (80- ). 347(6222):1258367–1258367. CrossRefGoogle Scholar
  31. 31.
    Perkins G, Yap TA, Pope L, Cassidy AM, Dukes JP, Riisnaes R, Massard C, Cassier PA, Miranda S, Clark J, Denholm KA, Thway K, Gonzalez de Castro D, Attard G, Molife LR, Kaye SB, Banerji U, de Bono JS (2012) Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. Perez-Gracia JL, ed. PLoS One 7(11):e47020. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald N, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schmidt K, Diehl F (2009) A blood-based DNA test for colorectal Cancer screening. Discov Med 7(37):7–12 Accessed 25 Nov 2018Google Scholar
  34. 34.
    Kirsch C, Weickmann S, Schmidt B, Fleischhacker M (2008) An improved method for the isolation of free-circulating plasma DNA and cell-free DNA from other body fluids. Ann N Y Acad Sci 1137(1):135–139. CrossRefPubMedGoogle Scholar
  35. 35.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science (80- ) 338(6114):1622–1626. CrossRefGoogle Scholar
  36. 36.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. CrossRefPubMedGoogle Scholar
  37. 37.
    Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci 102(45):16368–16373. CrossRefPubMedGoogle Scholar
  38. 38.
    Shaw JA, Stebbing J (2014) Circulating free DNA in the management of breast cancer. Ann Transl Med 2(1):3. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science (80- ). 359(6378):926–930. CrossRefGoogle Scholar
  40. 40.
    Gemenetzis G, Groot VP, Yu J, Ding D, Teinor JA, Javed AA, Wood LD, Burkhart RA, Cameron JL, Makary MA, Weiss MJ, He J, Wolfgang CL (2018) Circulating tumor cells dynamics in pancreatic adenocarcinoma correlate with disease status results of the prospective CLUSTER study. 268:408–420.
  41. 41.
    Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, Mouroux J, Marquette CH, Hofman P (2014) “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One 9:e111597. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Perakis S, Speicher MR (2017) Emerging concepts in liquid biopsies. BMC Med 15(1):75. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68. CrossRefPubMedGoogle Scholar
  44. 44.
    Madhavan D, Wallwiener M, Bents K, Zucknick M, Nees J, Schott S, Cuk K, Riethdorf S, Trumpp A, Pantel K, Sohn C, Schneeweiss A, Surowy H, Burwinkel B (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146(1):163–174. CrossRefPubMedGoogle Scholar
  45. 45.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LWMM, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast Cancer. N Engl J Med 351(8):781–791. CrossRefPubMedGoogle Scholar
  46. 46.
    Rack B, Schindlbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA, Fehm T, Schneeweiss A, Lichtenegger W, Beckmann MW, Friese K, Pantel K, Janni W, SUCCESS Study Group (2014) Circulating tumor cells predict survival in early average-to-high risk breast Cancer patients. J Natl Cancer Inst 106(5).
  47. 47.
    Madic J, Kiialainen A, Bidard F-C, Birzele F, Ramey G, Leroy Q, Frio TR, Vaucher I, Raynal V, Bernard V, Lermine A, Clausen I, Giroud N, Schmucki R, Milder M, Horn C, Spleiss O, Lantz O, Stern MH, Pierga JY, Weisser M, Lebofsky R (2015) Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int J Cancer 136(9):2158–2165. CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D (2013) The identification and characterization of breast Cancer CTCs competent for brain metastasis. Sci Transl Med 5(180):180ra48–180ra48. CrossRefPubMedGoogle Scholar
  49. 49.
    Vashist YK, Effenberger KE, Vettorazzi E, Riethdorf S, Yekebas EF, Izbicki JR, Pantel K (2012) Disseminated tumor cells in bone marrow and the natural course of resected esophageal Cancer. Ann Surg 255(6):1105–1112. CrossRefPubMedGoogle Scholar
  50. 50.
    Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K, Riethdorf S, Wege H (2013) Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer 133(9):2165–2171. CrossRefPubMedGoogle Scholar
  51. 51.
    Poruk KE, Valero V, Saunders T et al (2016) Circulating tumor cell phenotype predicts recurrence and survival in pancreatic adenocarcinoma. Ann Surg 264(6):1073–1081. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gazzaniga P, de Berardinis E, Raimondi C, Gradilone A, Busetto GM, de Falco E, Nicolazzo C, Giovannone R, Gentile V, Cortesi E, Pantel K (2014) Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer. Int J Cancer 135(8):1978–1982. CrossRefPubMedGoogle Scholar
  53. 53.
    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-Cancer cells. N Engl J Med 359(4):366–377. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME (2010) Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem 56(9):1492–1495. CrossRefPubMedGoogle Scholar
  55. 55.
    Sakaizawa K, Goto Y, Kiniwa Y, Uchiyama A, Harada K, Shimada S, Saida T, Ferrone S, Takata M, Uhara H, Okuyama R (2012) Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer 106(5):939–946. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Luo X, Mitra D, Sullivan RJ, Wittner BS, Kimura AM, Pan S, Hoang MP, Brannigan BW, Lawrence DP, Flaherty KT, Sequist LV, McMahon M, Bosenberg MW, Stott SL, Ting DT, Ramaswamy S, Toner M, Fisher DE, Maheswaran S, Haber DA (2014) Isolation and molecular characterization of circulating melanoma cells. Cell Rep 7(3):645–653. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS, Yaqubie A, Kelly N, le DT, Lipson EJ, Chapman PB, Diaz LA Jr, Vogelstein B, Nowak MA (2013) Evolutionary dynamics of cancer in response to targeted combination therapy. Elife. 2:e00747. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wilking U, Karlsson E, Skoog L, Hatschek T, Lidbrink E, Elmberger G, Johansson H, Lindström L, Bergh J (2011) HER2 status in a population-derived breast cancer cohort: discordances during tumor progression. Breast Cancer Res Treat 125(2):553–561. CrossRefPubMedGoogle Scholar
  59. 59.
    Yamada T, Iwai T, Takahashi G, Kan H, Koizumi M, Matsuda A, Shinji S, Yamagishi A, Yokoyama Y, Tatsuguchi A, Kawagoe T, Kitano S, Nakayama M, Matsumoto S, Uchida E (2016) Utility of KRAS mutation detection using circulating cell-free DNA from patients with colorectal cancer. Cancer Sci 107(7):936–943. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tsao SC-H, Wang J, Wang Y, Behren A, Cebon J, Trau M (2018) Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun 9(1):1482. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O'Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32(31):3483–3489. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Albrecht S, Schochter F, Melcher CA, Hagenbeck C, Friedl TWP, Jaeger B, Rack BK, Mueller V, Fasching PA, Janni W, TNF DETECT III/IV: Two combined clinical trials based on the phenotype of circulating tumor cells (CTCs). J Clin Oncol Published 2014. Accessed 9 Dec 2018
  63. 63.
    Ignatiadis M, Litière S, Rothe F, Riethdorf S, Proudhon C, Fehm T, Aalders K, Forstbauer H, Fasching PA, Brain E, Vuylsteke P, Guardiola E, Lorenz R, Pantel K, Tryfonidis K, Janni W, Piccart M, Sotiriou C, Rack B, Pierga JY (2018) Trastuzumab versus observation for HER2 nonamplified early breast cancer with circulating tumor cells (EORTC 90091-10093, BIG 1-12, treat CTC): a randomized phase II trial. Ann Oncol 29(8):1777–1783. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Barbara Aldana Blanco
    • 1
    • 2
  • Christopher L. Wolfgang
    • 3
    Email author
  1. 1.General Surgery ResidentBoston Medical CenterBostonUSA
  2. 2.Research FellowJohns Hopkins Medical InstitutionBaltimoreUSA
  3. 3.Division of Surgical Oncology, Surgical Oncology, Pathology and OncologyJohns Hopkins Medical InstitutionBaltimoreUSA

Personalised recommendations