Langenbeck's Archives of Surgery

, Volume 399, Issue 1, pp 127–133

Technical feasibility of liver transplantation without cold storage

Rapid Communication



The success of liver transplantation (LT) is accompanied by an increased need for organs. The wider use of older donors and marginal organs with risk factors such as steatosis has lead to a new interest to improve the outcome with marginal organs. We herewith report a novel technique for LT with in situ preparation and immediate warm-ischemia liver transplantation (WI-LT). The aim of our study was to demonstrate the technical feasibility and report the transplant course.


Six patients underwent WI-LT at our institution. Hepatectomies during procurement and LT were both performed in parallel by different surgical teams. Technical factors and postoperative allograft function were analyzed.


All six WI-LTs were performed without intraoperative complications with a mean warm-ischemia time (WIT) of 29.0 min. No patient developed primary non-function or required retransplantation. Mean alanine aminotransferase (194.0 ± 170.4 U/l) and aspartate aminotransferase (316.3 ± 222.1 U/l) values on the first postoperative day were low, indicating a low ischemia/reperfusion injury and an excellent liver function.


These results demonstrate that WI-LT is a safe and technically feasible approach for LT with possibly reduced IRI and an excellent postoperative allograft quality. WI-LT may therefore be considered in individual patients especially with extended criteria donors to eventually improve postoperative allograft quality.


Cold ischemia Ischemia/reperfusion injury (IRI) Liver transplantation Organ preservation Warm ischemia 


  1. 1.
    Adam R, Hoti E (2009) Liver transplantation: the current situation. Semin Liver Dis 29:3–18PubMedCrossRefGoogle Scholar
  2. 2.
    Pascher A, Nebrig M, Neuhaus P (2013) Irreversible liver failure: treatment by transplantation: part 3 of a series on liver cirrhosis. Dtsch Arztebl Int 110:167–173PubMedCentralPubMedGoogle Scholar
  3. 3.
    Schrem H, Till N, Becker T, Bektas H, Manns MP, Strassburg CP et al (2008) Long-term results after liver transplantation. Chirurg 79:121–129PubMedCrossRefGoogle Scholar
  4. 4.
    Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM et al (1993) Risk factors for primary dysfunction after liver transplantation—a multivariate analysis. Transplantation 55:807–813PubMedCrossRefGoogle Scholar
  5. 5.
    Clavien PA, Harvey PR, Strasberg SM (1992) Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation 53:957–978PubMedCrossRefGoogle Scholar
  6. 6.
    Guichelaar MM, Benson JT, Malinchoc M, Krom RA, Wiesner RH, Charlton MR (2003) Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation. Am J Transplant 3:885–890PubMedCrossRefGoogle Scholar
  7. 7.
    Noack K, Bronk SF, Kato A, Gores GJ (1993) The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia. Implications for the pathogenesis of biliary strictures after liver transplantation. Transplantation 56:495–500PubMedCrossRefGoogle Scholar
  8. 8.
    Kim YI (2003) Ischemia-reperfusion injury of the human liver during hepatic resection. J Hepatobiliary Pancreat Surg 10:195–199PubMedCrossRefGoogle Scholar
  9. 9.
    Birrer R, Takuda Y, Takara T (2007) Hypoxic hepatopathy: pathophysiology and prognosis. Intern Med 46:1063–1070PubMedCrossRefGoogle Scholar
  10. 10.
    Rushing GD, Britt LD (2008) Reperfusion injury after hemorrhage: a collective review. Ann Surg 247:929–937PubMedCrossRefGoogle Scholar
  11. 11.
    Carini R, Autelli R, Bellomo G, Albano E (1999) Alterations of cell volume regulation in the development of hepatocyte necrosis. Exp Cell Res 248:280–293PubMedCrossRefGoogle Scholar
  12. 12.
    Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208PubMedCrossRefGoogle Scholar
  13. 13.
    Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P et al (2003) Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124:91–96PubMedCrossRefGoogle Scholar
  14. 14.
    Taner CB, Bulatao IG, Willingham DL, Perry DK, Sibulesky L, Pungpapong S et al (2012) Events in procurement as risk factors for ischemic cholangiopathy in liver transplantation using donation after cardiac death donors. Liver Transpl 18:100–111PubMedCrossRefGoogle Scholar
  15. 15.
    Furukawa H, Todo S, Imventarza O, Casavilla A, Wu YM, Scotti-Foglieni C et al (1991) Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation 51:1000–1004PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Zachariassen KE (1991) Hypothermia and cellular physiology. Arctic Med Res 50:13–17PubMedGoogle Scholar
  17. 17.
    Kerkweg U, Li T, de Groot H, Rauen U (2002) Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: the central role of chelatable iron. Hepatology 35:560–567PubMedCrossRefGoogle Scholar
  18. 18.
    Olschewski P, Gass P, Ariyakhagorn V, Jasse K, Hunold G, Menzel M et al (2010) The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology 60:337–343PubMedCrossRefGoogle Scholar
  19. 19.
    Reddy S, Greenwood J, Maniakin N, Bhattacharjya S, Zilvetti M, Brockmann J et al (2005) Non-heart-beating donor porcine livers: the adverse effect of cooling. Liver Transpl 11:35–38PubMedCrossRefGoogle Scholar
  20. 20.
    Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E et al (2013) AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res. doi:10.1111/jpi.12051 PubMedGoogle Scholar
  21. 21.
    Starzl TE, Groth CG, Brettschneider L, Moon JB, Fulginiti VA, Cotton EK et al (1968) Extended survival in 3 cases of orthotopic homotransplantation of the human liver. Surgery 63:549–563PubMedCentralPubMedGoogle Scholar
  22. 22.
    Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP et al (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360:7–19PubMedCrossRefGoogle Scholar
  23. 23.
    Moustafellos P, Hadjianastassiou V, Roy D, Muktadir A, Contractor H, Vaidya A et al (2007) The influence of pulsatile preservation in kidney transplantation from non-heart-beating donors. Transplant Proc 39:1323–1325PubMedCrossRefGoogle Scholar
  24. 24.
    Torzilli G, Procopio F, Donadon M, Del Fabbro D, Cimino M, Montorsi M (2012) Safety of intermittent Pringle maneuver cumulative time exceeding 120 minutes in liver resection: a further step in favor of the "radical but conservative" policy. Ann Surg 255:270–280PubMedCrossRefGoogle Scholar
  25. 25.
    Ward EM, Kiely MJ, Maus TP, Wiesner RH, Krom RA (1990) Hilar biliary strictures after liver transplantation: cholangiography and percutaneous treatment. Radiology 177:259–263PubMedGoogle Scholar
  26. 26.
    Campbell WL, Sheng R, Zajko AB, Abu-Elmagd K, Demetris AJ (1994) Intrahepatic biliary strictures after liver transplantation. Radiology 191:735–740PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of General, Visceral, and Transplantation Surgery, Charité Campus VirchowCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations