Langenbeck's Archives of Surgery

, Volume 398, Issue 4, pp 487–499 | Cite as

Biobanking for research in surgery: are surgeons in charge for advancing translational research or mere assistants in biomaterial and data preservation?

  • Wolfgang E. Thasler
  • Reinhard M. K. Thasler
  • Celine Schelcher
  • Karl-Walter Jauch
Review Article



High-quality biospecimens of human origin with annotated clinical and procedural data are an important tool for biomedical research, not only to map physiology, pathophysiology and aetiology but also to go beyond in translational research. This has opened a new special field of research known as ‘biobanking’, which focuses on how to collect, store and provide these specimens and data, and which is substantially supported by national and European funding.


An overview on biobanking is given, with a closer look on a clinical setting, concerning a necessary distinction from clinical trials and studies as well as a comparison of prospective sample collection with secondary use of archived samples from diagnostics. Based on a summary of possible use and scientific impact of human tissue in research, it is shown how surgical expertise boosts the scientific value of specimens and data. Finally, an assessment of legal and ethical issues especially from a surgical perspective is given, followed by a model of interdisciplinary biobanking within a joint ‘centre’ that as synergistic structure merges essential input from surgery as well as laboratory medicine, pathology and biometry.


Within the domain of biobanking, surgeons have to develop a better awareness of their role within translational research, not only on the level of medical faculties but also as nationally and internationally funded initiatives. Therefore, the authors suggest a platform for biobanking within the German association of surgeons in analogy to the existing special interest group for clinical trials.


Translational research Biobanking Tissue banking Pre-analytics Informed consent Biobank governance 


  1. 1.
    OECD. OECD guidelines on human biobanks and genetic research databases. [pdf document] 2009 [cited 2013 27.01.].
  2. 2.
    Christoph Revermann, A.S. Biobanken für die humanmedizinische Forschung und Anwendung. [pdf document] 2006 [cited 2013 27.01.].
  3. 3.
    Gibbons SM (2009) Regulating biobanks: a twelve-point typological tool. Med Law Rev 17(3):313–346PubMedCrossRefGoogle Scholar
  4. 4.
    Hoppe N, Bioequity—property and the human body, 1st ed. Medical law and ethics, ed. M. S2009, Farnham: Ashgate Publishing.Google Scholar
  5. 5.
    Hollands P, McCauley C (2009) Private cord blood banking: current use and clinical future. Stem Cell Rev 5(3):195–203PubMedCrossRefGoogle Scholar
  6. 6.
    Riegman PH et al (2008) Biobanking for better healthcare. Mol Oncol 2(3):213–222PubMedCrossRefGoogle Scholar
  7. 7.
    Shickle D, Griffin M, El-Arifi K (2010) Inter- and intra-biobank networks: classification of biobanks. Pathobiology 77(4):181–190PubMedCrossRefGoogle Scholar
  8. 8.
    Giesbertz NA, Bredenoord AL, van Delden JJ (2012) Inclusion of residual tissue in biobanks: opt-in or opt-out? PLoS Biol 10(8):e1001373PubMedCrossRefGoogle Scholar
  9. 9.
    Karlsen JR, S.J., Strand R (2009) In the ruins of Babel: should biobank regulations be harmonized? In: H.S. Solbakk JH, Hofmann B, (eds) The ethics of research biobanking. , Springer Science + Business Media, LLC. p. 331-344Google Scholar
  10. 10.
    Luque JS et al (2012) Formative research on perceptions of biobanking: what community members think. J Cancer Educ 27(1):91–99PubMedCrossRefGoogle Scholar
  11. 11.
    Shickle D (2006) The consent problem within DNA biobanks. Stud Hist Philos Biol Biomed Sci 37(3):503–519PubMedGoogle Scholar
  12. 12.
    Segerdahl P (2012) LifeGene: can obstacles still appear? In: Biobank Sweden. , Jan-Eric Litton: Stockholm. p. 3-5.Google Scholar
  13. 13.
    Hoppe N (2007) Out of touch: from corporeal to oncorporeal, ore Moore revisited. In: Ethics and law of intellectual property. N.H. Christian Lenk, Roberto Andorno, Editor , Ashgate: Aldershot. p. 199-212.Google Scholar
  14. 14.
    Hoeyer K (2008) The ethics of research biobanking: a critical review of the literature. Biotechnol Genet Eng Rev 25:429–452PubMedCrossRefGoogle Scholar
  15. 15.
    Hofmann B, S.J., Holm S (2009) Consent to biobank research: one size fits all? In: H.S. Solbakk JH, Hofmann B (eds) The ethics of research biobanking, Springer Science + Business Media, LLC. p. 3-24.Google Scholar
  16. 16.
    Hofmann B (2009) Broadening consent—and diluting ethics? J Med Ethics 35(2):125–129PubMedCrossRefGoogle Scholar
  17. 17.
    Widdows H, Cordell S (2011) The ethics of biobanking: key issues and controversies. Health Care Anal 19(3):207–219PubMedCrossRefGoogle Scholar
  18. 18.
    Treweek S, Doney A, Leiman D (2009) Public attitudes to the storage of blood left over from routine general practice tests and its use in research. J Health Serv Res Policy 14(1):13–19PubMedCrossRefGoogle Scholar
  19. 19.
    Hofler H (2006) Role of pathology: tumour banks, quality of tissue and more?. Verh Dtsch Ges Pathol 90: p. 46-51.Google Scholar
  20. 20.
    Moore HM et al (2011) Biospecimen reporting for improved study quality (BRISQ). J Proteome Res 10(8):3429–3438PubMedCrossRefGoogle Scholar
  21. 21.
    Yuille M et al (2008) Biobanking for Europe. Brief Bioinform 9(1):14–24PubMedCrossRefGoogle Scholar
  22. 22.
    (BMBF), B.f.B.u.F. Nationale Biomaterialbanken Initiative. 2010 [cited 2013 27.01.].
  23. 23.
    (BMBF), B.f.B.u.F. Spitzencluster - m4. 2010 [cited 2013 27.01.].
  24. 24.
    Oberlander M et al (2013) The “North German Tumor Bank of Colorectal Cancer”: status report after the first 2 years of support by the German Cancer Aid Foundation. Langenbecks Arch SurgGoogle Scholar
  25. 25.
    Indivumed. Indivumed. 2012 [cited 2013 27.01.].
  26. 26.
    Rupp GM, Locker J (1988) Purification and analysis of RNA from paraffin-embedded tissues. Biotechniques 6(1):56–60PubMedCrossRefGoogle Scholar
  27. 27.
    Goelz SE, Hamilton SR, Vogelstein B (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun 130(1):118–126PubMedCrossRefGoogle Scholar
  28. 28.
    Bohmann K et al (2009) RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin Chem 55(9):1719–1727PubMedCrossRefGoogle Scholar
  29. 29.
    Kotorashvili A et al (2012) Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7(4):e34683PubMedCrossRefGoogle Scholar
  30. 30.
    Lin J et al (2009) High-quality genomic DNA extraction from formalin-fixed and paraffin-embedded samples deparaffinized using mineral oil. Anal Biochem 395(2):265–267PubMedCrossRefGoogle Scholar
  31. 31.
    Taga M et al (2013) Improved PCR amplification for molecular analysis using DNA from long-term preserved formalin-fixed, paraffin-embedded lung cancer tissue specimens. Int J Clin Exp Pathol 6(1):76–79PubMedGoogle Scholar
  32. 32.
    Hood BL et al (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4(11):1741–1753PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang X et al (2007) Development of efficient protein extraction methods for shotgun proteome analysis of formalin-fixed tissues. J Proteome Res 6(3):1038–1047PubMedCrossRefGoogle Scholar
  34. 34.
    Nirmalan NJ et al (2011) Initial development and validation of a novel extraction method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome for biomarker investigations. J Proteome Res 10(2):896–906PubMedCrossRefGoogle Scholar
  35. 35.
    Palmer-Toy DE et al (2005) Efficient method for the proteomic analysis of fixed and embedded tissues. J Proteome Res 4(6):2404–2411PubMedCrossRefGoogle Scholar
  36. 36.
    Wolff C et al (2011) Successful protein extraction from over-fixed and long-term stored formalin-fixed tissues. PLoS One 6(1):e16353PubMedCrossRefGoogle Scholar
  37. 37.
    Rentoft M et al (2012) Transcriptional profiling of formalin fixed paraffin embedded tissue: pitfalls and recommendations for identifying biologically relevant changes. PLoS One 7(4):e35276PubMedCrossRefGoogle Scholar
  38. 38.
    Schweiger MR et al (2009) Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4(5):e5548PubMedCrossRefGoogle Scholar
  39. 39.
    Brisson AR et al (2012) Translational research in pediatrics: tissue sampling and biobanking. Pediatrics 129(1):153–162PubMedCrossRefGoogle Scholar
  40. 40.
    Shulman M, Nahmias Y (2013) Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol 945:287–302PubMedCrossRefGoogle Scholar
  41. 41.
    Li AP (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact 168(1):16–29PubMedCrossRefGoogle Scholar
  42. 42.
    McGinnity DF et al (2004) Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metabolism and Disposition 32(11):1247–1253PubMedCrossRefGoogle Scholar
  43. 43.
    Gomez-Lechon MJ et al (2006) Cryopreservation of rat, dog and human hepatocytes: influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica 36(6):457–472PubMedCrossRefGoogle Scholar
  44. 44.
    Li AP et al (1999) Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact 121(1):17–35PubMedCrossRefGoogle Scholar
  45. 45.
    Glaysher S, Cree IA (2011) Isolation and culture of colon cancer cells and cell lines. Methods Mol Biol 731:135–140PubMedCrossRefGoogle Scholar
  46. 46.
    Failli A et al (2009) The challenge of culturing human colorectal tumor cells: establishment of a cell culture model by the comparison of different methodological approaches. Tumori 95(3):343–347PubMedGoogle Scholar
  47. 47.
    Fodor WL (2003) Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 1:102PubMedCrossRefGoogle Scholar
  48. 48.
    Huss R et al (2004) Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL(+) multipotent adult progenitor cell clones from peripheral blood. J Vasc Res 41(5):422–431PubMedCrossRefGoogle Scholar
  49. 49.
    Conrad C et al (2011) Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg 253(3):566–71Google Scholar
  50. 50.
    Chen DS et al (1984) Serum alpha-fetoprotein in the early stage of human hepatocellular carcinoma. Gastroenterology 86(6):1404–1409PubMedGoogle Scholar
  51. 51.
    Behne T, Copur MS (2012) Biomarkers for hepatocellular carcinoma. Int J Hepatol 2012:859076PubMedGoogle Scholar
  52. 52.
    Qi J et al (2013) Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma 60(2):135–142PubMedCrossRefGoogle Scholar
  53. 53.
    Lee SM et al (2013) RNA stability in human liver: comparison of different processing times, temperatures and methods. Mol Biotechnol 53(1):1–8Google Scholar
  54. 54.
    Spruessel A et al (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 36(6):1030–1037PubMedGoogle Scholar
  55. 55.
    Neumeister VM et al (2012) Quantitative assessment of effect of preanalytic cold ischemic time on protein expression in breast cancer tissues. J Natl Cancer Inst 104(23):1815–1824PubMedCrossRefGoogle Scholar
  56. 56.
    Bernini P et al (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49(3–4):231–243PubMedCrossRefGoogle Scholar
  57. 57.
    Bao WG, et al (2012) Biobanking of fresh-frozen human colon tissues: impact of tissue Ex-vivo ischemia times and storage periods on RNA quality. Ann Surg OncolGoogle Scholar
  58. 58.
    Bundesärztekammer. (Muster-) Berufsordnung für die in Deutschland tätigen Ärztinnen und Ärzte. 2011 [cited 2013 27.01.].
  59. 59.
    Bundesärztekammer, Positionspapier zur Qualitätssicherung in der Pathologie, in Deutsches Ärzteblatt1991.Google Scholar
  60. 60.
    Schroder C et al (2011) Safeguarding donors’ personal rights and biobank autonomy in biobank networks: the CRIP privacy regime. Cell Tissue Bank 12(3):233–240PubMedCrossRefGoogle Scholar
  61. 61.
    Yang HK (2011) Operating room to bench for gastric cancer. Pathobiology 78(6):320–327PubMedCrossRefGoogle Scholar
  62. 62.
    Simeon-Dubach D, Burt AD, Hall PA (2012) Quality really matters: the need to improve specimen quality in biomedical research. J PatholGoogle Scholar
  63. 63.
    Robienski J (2010) Die Auswirkungen von Gewebegesetz und Gendiagnostikgesetz auf die biomedizinische Forschung, 1st edn. In: A.M. Simon JW, Grabmaier S, Memis T, Robienski J, Salger HC (eds) Finance, insurance law, vol 3. , Hamburg: Verlag Dr. Kovac.Google Scholar
  64. 64.
    Zech E (2007) Gewebebanken für Therapie und Forschung: Rechtliche Grundlagen und Grenzen. In: Faculty of law. Georg-August-Universität: GöttingenGoogle Scholar
  65. 65.
    Simon JW, P.R., Robienski J, Goebel JW, Krawczak M (2006) Biomaterialbanken - Rechtliche Rahmenbedingungen, 1st edn. Schriftenreihe der Telematikplattform für Medizinische Forschungsnetze. Vol. 2. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft.Google Scholar
  66. 66.
    Simon J et al (2007) A legal framework for biobanking: the German experience. Eur J Hum Genet 15(5):528–532PubMedCrossRefGoogle Scholar
  67. 67.
    Simon J, Robienski J (2009) Framework for setting up and operating biobanks. J Int Bioethique 20(3):17–46, 145PubMedGoogle Scholar
  68. 68.
    Goebel JW et al (2010) Legal and ethical consequences of international biobanking from a national perspective: the German BMB-EUCoop project. Eur J Hum Genet 18(5):522–525PubMedCrossRefGoogle Scholar
  69. 69.
    Evers K, Stjernschantz-Forsberg J, Eliason JF (2012) What are your views on commercialization of tissue for research? Biobanking and Biopreservation 10(6):476–478CrossRefGoogle Scholar
  70. 70.
    DeutscherEthikrat. Humanbiobanken für die Forschung - Stellungnahme. [pdf document] 2010 [cited 2013 27.01.].
  71. 71.
    Deutsche-Forschungsgemeinschaft. Stellungnahme der DFG-Senatskommissionen für Klinische Forschung und für Grundsatzfragen der Genforschung zur Diskussion um ein Biobankgesetz. [pdf document] 2011 [cited 2013 27.01.].
  72. 72.
    Cordell S (2011) The biobank as an ethical subject. Health Care Anal 19(3):282–294PubMedCrossRefGoogle Scholar
  73. 73.
    Gesetze im Internet. [database] [cited 2013 27.01.].
  74. 74.
    Riegman PH, van Veen EB (2011) Biobanking residual tissues. Hum Genet 130(3):357–368PubMedCrossRefGoogle Scholar
  75. 75.
    Simon J, Robienski J (2009) Property, personality rights and data protection with regard to biobanks–a layered system. J Int Bioethique 20(3):47–56PubMedCrossRefGoogle Scholar
  76. 76.
    Bioethik-Kommission, d.B.S. Biobanken - Stellungnahme der Bioethik-Kommission der Bayerischen Staatsregierung vom 17. September 2010. 2010 [cited 2013 27.01.].
  77. 77.
    McKneally MF et al (2009) Responding to trust: surgeons’ perspective on informed consent. World J Surg 33(7):1341–1347PubMedCrossRefGoogle Scholar
  78. 78.
    Rossler D (1982) Surgery within the scope of technical perfection and humanitarianism. Langenbecks Arch Chir 358:47–52PubMedCrossRefGoogle Scholar
  79. 79.
    Axelrod DA, Goold SD (2000) Maintaining trust in the surgeon–patient relationship: challenges for the new millennium. Arch Surg 135(1):55–61PubMedCrossRefGoogle Scholar
  80. 80.
    Herpel E et al (2012) Gewebebanken in der Tumorforschung. Forum 27(1):47–53CrossRefGoogle Scholar
  81. 81.
    PATH. Patients Tumor Bank of Hope. [website] 2012 [cited 2013 27.01.].
  82. 82.
    Thasler WE et al (2003) Charitable state-controlled foundation Human Tissue and Cell Research: ethic and legal aspects in the supply of surgically removed human tissue for research in the academic and commercial sector in Germany. Cell Tissue Bank 4(1):49–56PubMedCrossRefGoogle Scholar
  83. 83.
    Thasler WE et al (2006) Human tissue for in vitro research as an alternative to animal experiments: a charitable “honest broker” model to fulfil ethical and legal regulations and to protect research participants. Altern Lab Anim 34(4):387–392PubMedGoogle Scholar
  84. 84.
    Demeure MJ et al (2010) Multi-institutional tumor banking: lessons learned from a pancreatic cancer biospecimen repository. Pancreas 39(7):949–954PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wolfgang E. Thasler
    • 1
    • 2
  • Reinhard M. K. Thasler
    • 2
    • 3
  • Celine Schelcher
    • 2
  • Karl-Walter Jauch
    • 1
  1. 1.Department of General, Visceral, Transplantation, Vascular and Thoracic SurgeryLudwig Maximilians UniversityMunichGermany
  2. 2.Tissue Bank under the authority of HTCR, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Grosshadern HospitalUniversity of Munich Medical CentreMunichGermany
  3. 3.Munich Biobank AllianceBioM Biotech Cluster Development GmbHMartinsriedGermany

Personalised recommendations