Advertisement

Langenbeck's Archives of Surgery

, Volume 397, Issue 3, pp 467–474 | Cite as

Green tea protects human osteoblasts from cigarette smoke-induced injury: possible clinical implication

  • Nina Holzer
  • Karl F. Braun
  • Sabrina Ehnert
  • José T. Egaña
  • Thilo L. Schenck
  • Arne Buchholz
  • Lilianna Schyschka
  • Markus Neumaier
  • Steffen Benzing
  • Ulrich Stöckle
  • Thomas Freude
  • Andreas K. NusslerEmail author
Original Article

Abstract

Purpose

Recent reports discuss the altered bone homeostasis in cigarette smokers, being a risk factor for osteoporosis and negatively influencing fracture healing. Cigarette smoke is known to induce oxidative stress in the body via an increased production of reactive oxygen species (ROS). These increases in ROS are thought to damage the bone-forming osteoblasts. Naturally occurring polyphenols contained in green tea extract (GTE), e.g., catechins, are known to have anti-oxidative properties. Therefore, the aim of this study was to investigate whether GTE and especially catechins protect primary human osteoblasts from cigarette smoke-induced damage and to identify the underlying mechanisms.

Methods

Primary human osteoblasts were isolated from patients’ femur heads. Cigarette smoke medium (CSM) was obtained using a gas-washing bottle and standardized by its optical density (OD320) at λ = 320 nm. ROS formation was measured using 2′7′dichlorofluorescein diacetate, and osteoblasts’ viability was detected by resazurin conversion.

Results

Co-, pre-, and post-incubation with GTE and catechins significantly reduced ROS formation and thus improved the viability of CSM-treated osteoblasts. Besides GTE’s direct radical scavenging properties, pre-incubation with both GTE and catechins protected osteoblasts from CSM-induced damage. Inhibition of the anti-oxidative enzyme HO-1 significantly reduced the protective effect of GTE and catechins emphasizing the key role of this enzyme in GTE anti-oxidative effect.

Conclusions

Our data suggest possible beneficial effects on bone homeostasis, fracture healing, and bone mineral density following a GTE-rich diet or supplementation.

Keywords

Green tea extract Catechins Cigarette smoke medium Oxidative stress HO-1 Primary human osteoblasts 

Notes

Conflicts of interest

None.

References

  1. 1.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139PubMedCrossRefGoogle Scholar
  2. 2.
    Nijweide PJ et al (1986) Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev 66:855–886PubMedGoogle Scholar
  3. 3.
    Akhter MP et al (2005) Bone biomechanical property deterioration due to tobacco smoke exposure. Calcif Tissue Int 77:319–326PubMedCrossRefGoogle Scholar
  4. 4.
    Cesar-Neto JB et al (2005) The influence of cigarette smoke inhalation on bone density. A radiographic study in rats. Braz Oral Res 19:47–51PubMedCrossRefGoogle Scholar
  5. 5.
    Cesar-Neto JB et al (2006) The influence of cigarette smoke inhalation and its cessation on the tooth-supporting alveolar bone: a histometric study in rats. J Periodontal Res 41:118–123PubMedCrossRefGoogle Scholar
  6. 6.
    Cesar-Neto JB et al (2003) A comparative study on the effect of nicotine administration and cigarette smoke inhalation on bone healing around titanium implants. J Periodontol 74:1454–1459PubMedCrossRefGoogle Scholar
  7. 7.
    Rapuri PB et al (2000) Smoking and bone metabolism in elderly women. Bone 27:429–436PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitz MA et al. (1999) Effect of smoking on tibial shaft fracture healing. Clin Orthop Relat Res 365:184–200Google Scholar
  9. 9.
    Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68:259–270PubMedCrossRefGoogle Scholar
  10. 10.
    Rothem DE et al (2009) Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. J Bone Miner Metab 27:555–561PubMedCrossRefGoogle Scholar
  11. 11.
    Ajiro Y et al (2010) Impact of passive smoking on the bones of rats. Orthopedics 33:90–95PubMedCrossRefGoogle Scholar
  12. 12.
    Ueng SW et al (1999) Hyperbaric oxygen therapy mitigates the adverse effect of cigarette smoking on the bone healing of tibial lengthening: an experimental study on rabbits. J Trauma 47:752–759PubMedCrossRefGoogle Scholar
  13. 13.
    Ueng SW et al (1999) Bone healing of tibial lengthening is delayed by cigarette smoking: study of bone mineral density and torsional strength on rabbits. J Trauma 46:110–115PubMedCrossRefGoogle Scholar
  14. 14.
    Nakamura Y et al (1995) Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis. Am J Respir Crit Care Med 151:1497–1503PubMedGoogle Scholar
  15. 15.
    Wang H et al (2001) Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol 25:772–779PubMedGoogle Scholar
  16. 16.
    Willey JC et al (1987) Biochemical and morphological effects of cigarette smoke condensate and its fractions on normal human bronchial epithelial cells in vitro. Cancer Res 47:2045–2049PubMedGoogle Scholar
  17. 17.
    Cesar-Neto JB et al (2007) Smoking modulates interleukin-6:interleukin-10 and RANKL:osteoprotegerin ratios in the periodontal tissues. J Periodontal Res 42:184–191PubMedCrossRefGoogle Scholar
  18. 18.
    Giorgetti AP et al. (2010) Cigarette smoke inhalation modulates gene expression in sites of bone healing: a study in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:447–452Google Scholar
  19. 19.
    Kim H et al (2004) Reversible cigarette smoke extract-induced DNA damage in human lung fibroblasts. Am J Respir Cell Mol Biol 31:483–490PubMedCrossRefGoogle Scholar
  20. 20.
    Mortaz E et al (2009) Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS One 4:e4946PubMedCrossRefGoogle Scholar
  21. 21.
    Bai XC et al (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF–kappaB. Biochem Biophys Res Commun 314:197–207PubMedCrossRefGoogle Scholar
  22. 22.
    Bai XC et al (2005) Reactive oxygen species stimulates receptor activator of NF–kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalez-Gallego J et al. (2010) Fruit polyphenols, immunity and inflammation. Br J Nutr 104(Suppl 3):S15–27Google Scholar
  24. 24.
    Gonzalez-Gallego J et al (2007) Anti-inflammatory properties of dietary flavonoids. Nutr Hosp 22:287–293PubMedGoogle Scholar
  25. 25.
    Russo A et al (2000) Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 16:91–98PubMedCrossRefGoogle Scholar
  26. 26.
    Gawlik M, Czajka A (2007) The effect of green, black and white tea on the level of alpha and gamma tocopherols in free radical-induced oxidative damage of human red blood cells. Acta Pol Pharm 64:159–164PubMedGoogle Scholar
  27. 27.
    Relja B et al. (2011) Effects of green tea catechins on the pro-inflammatory response after haemorrhage/resuscitation in rats. Br J Nutr 4:1–7Google Scholar
  28. 28.
    Shen CL et al. (2010) Protective actions of green tea polyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J Nutr Biochem 22:673-680Google Scholar
  29. 29.
    Shen CL et al (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19:979–990PubMedCrossRefGoogle Scholar
  30. 30.
    Wu CH et al (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006PubMedCrossRefGoogle Scholar
  31. 31.
    Bao W et al (2010) Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. J Ethnopharmacol 128:549–553PubMedCrossRefGoogle Scholar
  32. 32.
    Yao P et al (2007) Heme oxygenase-1 upregulated by Ginkgo biloba extract: potential protection against ethanol-induced oxidative liver damage. Food Chem Toxicol 45:1333–1342PubMedCrossRefGoogle Scholar
  33. 33.
    Yao P et al (2007) Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 47:253–261PubMedCrossRefGoogle Scholar
  34. 34.
    Farombi EO, Surh YJ (2006) Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J Biochem Mol Biol 39:479–491PubMedCrossRefGoogle Scholar
  35. 35.
    Barbagallo I et al (2011) Overexpression of heme oxygenase-1 increases human osteoblast stem cell differentiation. J Bone Miner Metab 28:276–288CrossRefGoogle Scholar
  36. 36.
    Komatsu DE, Hadjiargyrou M (2004) Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone 34:680–688PubMedCrossRefGoogle Scholar
  37. 37.
    Ehnert S et al (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5:e14073PubMedCrossRefGoogle Scholar
  38. 38.
    El-Amin SF et al (2006) Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. J Biomed Mater Res A 76:439–449PubMedGoogle Scholar
  39. 39.
    Roemer E et al (2004) Chemical composition, cytotoxicity and mutagenicity of smoke from US commercial and reference cigarettes smoked under two sets of machine smoking conditions. Toxicology 195:31–52PubMedCrossRefGoogle Scholar
  40. 40.
    Lin S et al (2009) Comparison of toxicity of smoke from traditional and harm-reduction cigarettes using mouse embryonic stem cells as a novel model for preimplantation development. Hum Reprod 24:386–397PubMedCrossRefGoogle Scholar
  41. 41.
    Luppi F et al (2005) Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione. Respir Res 6:140PubMedCrossRefGoogle Scholar
  42. 42.
    Wirtz HR, Schmidt M (1996) Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture. Eur Respir J 9:24–32PubMedCrossRefGoogle Scholar
  43. 43.
    Sarkar M et al (2006) Flow-cytometric analysis of reactive oxygen species in peripheral blood mononuclear cells of patients with thyroid dysfunction. Cytometry B Clin Cytom 70:20–23PubMedGoogle Scholar
  44. 44.
    Iwaniec UT et al (2001) Effects of nicotine on bone mass, turnover, and strength in adult female rats. Calcif Tissue Int 68:358–364PubMedCrossRefGoogle Scholar
  45. 45.
    Lee LL et al (2002) Polycyclic aromatic hydrocarbons present in cigarette smoke cause bone loss in an ovariectomized rat model. Bone 30:917–923PubMedCrossRefGoogle Scholar
  46. 46.
    Aoshiba K, Nagai A (2003) Oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke. Tob Induc Dis 1:219–226PubMedCrossRefGoogle Scholar
  47. 47.
    Devine A et al (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86:1243–1247PubMedGoogle Scholar
  48. 48.
    Hamdi Kara I et al (2007) Habitual tea drinking and bone mineral density in postmenopausal Turkish women: investigation of prevalence of postmenopausal osteoporosis in Turkey (IPPOT Study). Int J Vitam Nutr Res 77:389–397PubMedCrossRefGoogle Scholar
  49. 49.
    Hegarty VM et al (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71:1003–1007PubMedGoogle Scholar
  50. 50.
    Shen CL et al (2009) Green tea polyphenols and Tai Chi for bone health: designing a placebo-controlled randomized trial. BMC Musculoskelet Disord 10:110PubMedCrossRefGoogle Scholar
  51. 51.
    Shen CL et al (2009) Green tea and bone metabolism. Nutr Res 29:437–456PubMedCrossRefGoogle Scholar
  52. 52.
    Chae HJ et al (2006) Carbon monoxide and nitric oxide protect against tumor necrosis factor-alpha-induced apoptosis in osteoblasts: HO-1 is necessary to mediate the protection. Clin Chim Acta 365:270–278PubMedCrossRefGoogle Scholar
  53. 53.
    Lin TH et al (2011) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 222:757–768Google Scholar
  54. 54.
    Basu S et al (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nina Holzer
    • 1
  • Karl F. Braun
    • 1
  • Sabrina Ehnert
    • 2
  • José T. Egaña
    • 3
    • 4
  • Thilo L. Schenck
    • 3
  • Arne Buchholz
    • 1
  • Lilianna Schyschka
    • 1
  • Markus Neumaier
    • 1
  • Steffen Benzing
    • 5
  • Ulrich Stöckle
    • 2
  • Thomas Freude
    • 2
  • Andreas K. Nussler
    • 1
    • 2
    Email author
  1. 1.Department of Traumatology, MRITechnische Universität MünchenMunichGermany
  2. 2.BG Trauma CenterEberhard Karls Universität TübingenTübingenGermany
  3. 3.Department of Plastic Surgery and Hand SurgeryTechnische Universität MünchenMunichGermany
  4. 4.FONDAP Center for Genome Regulation, Facultad de CienciasUniversidad de ChileSantiagoChile
  5. 5.Fresenius Kabi GmbHOberurselGermany

Personalised recommendations