Langenbeck's Archives of Surgery

, Volume 397, Issue 3, pp 447–455 | Cite as

PCR-based rapid sepsis diagnosis effectively guides clinical treatment in patients with new onset of SIRS

  • Uwe LodesEmail author
  • Beate Bohmeier
  • Hans Lippert
  • Brigitte König
  • Frank Meyer
Original Article



Early detection of the causing microorganism and timely therapeutic intervention are crucial for improved outcome of patients with sepsis. Quite recently, we evaluated the technical and diagnostic feasibility of a commercial multiplex real-time polymerase chain reaction (PCR) (LightCycler SeptiFast® assay) for detection of blood stream infections in a cohort of intensive care unit (ICU) patients with the risk of abdominal sepsis.

Results and findings

The PCR positivity rate showed a high coincidence with systemic inflammatory response syndrome (SIRS; 75.8%). In this study, we focussed on patients from the same surgical ICU with upcoming SIRS and addressed the utility on therapeutic decision making following diagnostic application of PCR in addition and comparison to conventional microbiological and laboratory tests. In total, 104 patients on the ICU fulfilling the American College of Chest Physicians/Society of Critical Care Medicine SIRS criteria were enrolled. Blood samples were taken within 24 h of upcoming SIRS. Some 39.9% (n = 59) of the blood samples (n Total = 148) were positive using multiplex-PCR and 20.3% (n = 30) using conventional culture. In 11.4% of all samples, multiplex-PCR detected more than one microorganism. Among the 77 microorganisms identified by multiplex-PCR, only 25 (32.5%) could be confirmed by blood culture; an additional 17 could be confirmed by microbiological test results from other significant patient specimen. Positive blood samples independent of the detection method were characterised by significant elevated levels of procalcitonin (p < 0.05) but not C-reactive protein. In 25 cases (16.9%, n = 148), the rapid identification of involved pathogens by multiplex-PCR led to prompt adjustment of therapy.


Our study demonstrates improved detection of specific pathogens with a high intrinsic resistance and positive impact on therapeutic decision-making by additional multiplex-PCR-based analysis of blood samples for infectious agents in patients with new onset of SIRS. Thus, we showed for the first time that PCR test results guide clinical treatment successfully.


Multiplex-PCR LightCycler SeptiFast® assay Blood culture Sepsis SIRS Surgical ICU Procalcitonin CRP Antibiotics Antimycotics 


Conflicts of interest



  1. 1.
    Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 35:1244–1250PubMedCrossRefGoogle Scholar
  2. 2.
    Brunkhorst FM, Engel C, Reinhart K, for the German Competence Network Sepsis (SepNet) et al (2005) Epidemiology of severe sepsis and septic shock in Germany—results from the German “Prevalence” Study. Crit Care 9(Suppl 1):83CrossRefGoogle Scholar
  3. 3.
    De Waele JJ (2010) Early source control in sepsis. Langenbecks Arch Surg 395:489–494PubMedCrossRefGoogle Scholar
  4. 4.
    Ibrahim EH, Sherman G, Ward S et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155PubMedCrossRefGoogle Scholar
  5. 5.
    Kollef MH, Sherman G, Ward S et al (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474PubMedCrossRefGoogle Scholar
  6. 6.
    Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A et al (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31:2742–2751PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596PubMedCrossRefGoogle Scholar
  8. 8.
    Vincent JL (2008) Clinical sepsis and septic shock—definition, diagnosis and management principles. Langenbecks Arch Surg 393:817–824PubMedCrossRefGoogle Scholar
  9. 9.
    Bodmann KF, Grabein B, Expertenkommission der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. (2010) Empfehlungen zur kalkulierten parenteralen Initialtherapie bakterieller Erkrankungen bei Erwachsenen–Update 2010. Chemother J 19:179–255Google Scholar
  10. 10.
    Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prävention, Diagnose, Therapie und Nachsorge der Sepsis. 1. Revision der S-2k Leitlinien der Deutschen Sepsis-Gesellschaft e.V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Anaesthesist 59:347–370PubMedCrossRefGoogle Scholar
  11. 11.
    Sandiumenge A, Diaz E, Bodi M, Rello J (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of “The Tarragona Strategy”. Int Care Med 29:876–883Google Scholar
  12. 12.
    Lehmann LE, Hunfeld KP, Emrich T et al (2008) A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol 197:313–324PubMedCrossRefGoogle Scholar
  13. 13.
    Louie RF, Tang Z, Albertson TE et al (2008) Multiplex polymerase chain reaction detection enhancement of bacteremia and fungiemia. Crit Care Med 36(5):1487–1492PubMedCrossRefGoogle Scholar
  14. 14.
    Ivančević N, Radenković D, Bumbaširević V et al (2008) Procalcitonin in preoperative diagnosis of abdominal sepsis. Langenbecks Arch Surg 393:397–403PubMedCrossRefGoogle Scholar
  15. 15.
    Schroeder S, Hochreiter M, Koehler T et al (2009) Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg 394:221–226PubMedCrossRefGoogle Scholar
  16. 16.
    Lodes U, Meyer F, König B, Lippert H (2009) Mikrobiologisches sepsis-screening chirurgischer Intensivpatienten mit dem “Lightcycler” Septifast®-Test—eine Pilotstudie. Zentralbl Chir 134(3):249–253PubMedCrossRefGoogle Scholar
  17. 17.
    ACCP/SCCM Consensus Conference Committee (1992) Definition for sepsis and organ failure in guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  18. 18.
    Seifert H (2001) MIQ: Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik Heft 3: Sepsis-Blutkulturdiagnostik. Elsevier, Urban&Fischer MünchenGoogle Scholar
  19. 19.
    Mancini N, Clerici D, Diotti R et al (2008) Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J Med Microbiol 57(Pt 5):601–604PubMedCrossRefGoogle Scholar
  20. 20.
    Casalta JP, Gouriet F, Roux V et al (2009) Evaluation of the LightCycler® SeptiFast test in the rapid etiologic diagnostic of infectious endocarditis. Eur J Clin Microbiol Infect Dis 28(6):569–573PubMedCrossRefGoogle Scholar
  21. 21.
    Lehmann LE, Hunfeld KP, Steinbrucker M et al (2010) Improved detection of blood stream pathogens by real-time PCR in severe sepsis. Intensive Care Med 36(1):49–56PubMedCrossRefGoogle Scholar
  22. 22.
    Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355PubMedCrossRefGoogle Scholar
  23. 23.
    Mancini N, Carletti S, Ghidoli N et al (2009) Molecular diagnosis of polymicrobial sepsis. J Clin Microbiol 47:1274–1275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Uwe Lodes
    • 1
    Email author
  • Beate Bohmeier
    • 1
  • Hans Lippert
    • 1
  • Brigitte König
    • 2
  • Frank Meyer
    • 1
  1. 1.Department of General, Abdominal and Vascular SurgeryUniversity HospitalMagdeburgGermany
  2. 2.Institute of Medical Microbiology, University HospitalMagdeburgGermany

Personalised recommendations