Langenbeck's Archives of Surgery

, Volume 397, Issue 2, pp 255–270 | Cite as

Mesh biocompatibility: effects of cellular inflammation and tissue remodelling

  • Karsten Junge
  • Marcel Binnebösel
  • Klaus T. von Trotha
  • Raphael Rosch
  • Uwe Klinge
  • Ulf P. Neumann
  • Petra Lynen Jansen
Review Article

Abstract

Mesh biocompatibility is basically determined by the foreign body reaction (FBR). In contrast to physiological wound healing and scar formation, the FBR at the host-tissue/biomaterial interface is present for the lifetime of the medical device. The cellular interactions at the mesh/tissue interface proceed over time ending up in a chronic inflammatory process. The time course of the FBR has been studied extensively and consists of three crucial steps that are protein absorption, cell recruitment and, finally, fibrotic encapsulation and extracellular matrix formation. Each of these steps involves a complex cascade of immune modulators including soluble mediators and various cell types. Recent research has focused on the cellular and molecular interactions of the distinct phases of the FBR offering a new basis for therapeutical strategies. The highly dynamic process of the FBR is considerably influenced by the biomaterial composition. Modifications of the type of polymer, the material weight, the filament structure and the pore size are realized and have substantial effects on the in vivo biocompatibility. Moreover, modern mesh technology aims to utilize the available implants as carrier systems for bioactive drugs. Studies in animal models account for the efficiency of these drugs that aim to reduce mesh-related infections or to minimize FBR by influencing inflammation or extracellular matrix remodelling. A thorough understanding of the molecular mechanisms of FBR provides a sophisticated background for the development of new biomaterials at least as carrier systems for bioactive reagents to reduce inflammation and to improve clinical outcome.

Keywords

Mesh biocompatability Foreign body reaction Inflammation 

References

  1. 1.
    Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953PubMedCrossRefGoogle Scholar
  2. 2.
    Brown CN, Finch JG (2010) Which mesh for hernia repair? Ann R Coll Surg Engl 92:272–278PubMedCrossRefGoogle Scholar
  3. 3.
    Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V (2001) Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia 5:142–147PubMedCrossRefGoogle Scholar
  4. 4.
    Lange B, Langer C, Markus PM, Becker H (2003) Mesh penetration of the sigmoid colon following a transabdominal preperitoneal hernia repair. Surg Endosc 17:157PubMedCrossRefGoogle Scholar
  5. 5.
    Conze J, Rosch R, Klinge U, Weiss C, Anurov M, Titkowa S, Oettinger A, Schumpelick V (2004) Polypropylene in the intra-abdominal position: influence of pore size and surface area. Hernia 8:365–372PubMedCrossRefGoogle Scholar
  6. 6.
    Conze J, Klinge U, Schumpelick V (2006) Evidenzbasierte laparoskopische Chirurgie - Narbenhernie. Viszeralchirurgie 41:246–252CrossRefGoogle Scholar
  7. 7.
    Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133:378–382PubMedCrossRefGoogle Scholar
  8. 8.
    Robinson TN, Clarke JH, Schoen J, Walsh MD (2005) Major mesh-related complications following hernia repair: events reported to the food and drug administration. Surg Endosc 19:1556–1560PubMedCrossRefGoogle Scholar
  9. 9.
    Simons MP, Aufenacker T, Bay-Nielsen M, Bouillot JL, Campanelli G, Conze J, de Lange D, Fortelny R, Heikkinen T, Kingsnorth A, Kukleta J, Morales-Conde S, Nordin P, Schumpelick V, Smedberg S, Smietanski M, Weber G, Miserez M (2009) European Hernia society guidelines on the treatment of inguinal hernia in adult patients. Hernia 13:343–403PubMedCrossRefGoogle Scholar
  10. 10.
    Klinge U (2008) Mesh for hernia repair. Br J Surg 95:539–540PubMedCrossRefGoogle Scholar
  11. 11.
    Usher F, JL O, Tuttle LJ (1958) Use of Marlex mesh in the repair of incisional hernias. Am Surg 24:969–974PubMedGoogle Scholar
  12. 12.
    Klinge U, Junge K, Stumpf M, AP AP, Klosterhalfen B (2002) Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res 63:129–136PubMedCrossRefGoogle Scholar
  13. 13.
    Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 103:208–214PubMedCrossRefGoogle Scholar
  14. 14.
    Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Ottinger AP, Schumpelick V (1998) Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg 164:951–960PubMedCrossRefGoogle Scholar
  15. 15.
    Horstmann R, Hellwig M, Classen C, Rottgermann S, Palmes D (2006) Impact of polypropylene amount on functional outcome and quality of life after inguinal hernia repair by the TAPP procedure using pure, mixed, and titanium-coated meshes. World J Surg 30:1742–1749PubMedCrossRefGoogle Scholar
  16. 16.
    O'dwyer PJ, Kingsnorth AN, Molloy RG, Small PK, Lammers B, Horeyseck G (2005) Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair. Br J Surg 92:166–170PubMedCrossRefGoogle Scholar
  17. 17.
    Bringman S, Wollert S, Osterberg J, Smedberg S, Granlund H, Heikkinen TJ (2006) Three-year results of a randomized clinical trial of lightweight or standard polypropylene mesh in Lichtenstein repair of primary inguinal hernia. Br J Surg 93:1056–1059PubMedCrossRefGoogle Scholar
  18. 18.
    Nienhuijs S, Staal E, Strobbe L, Rosman C, Groenewoud H, Bleichrodt R (2007) Chronic pain after mesh repair of inguinal hernia: a systematic review. Am J Surg 194:394–400PubMedCrossRefGoogle Scholar
  19. 19.
    Conze J, Krones CJ, Schumpelick V, Klinge U (2007) Incisional hernia: challenge of re-operations after mesh repair. Langenbecks Arch Surg 392:453–457PubMedCrossRefGoogle Scholar
  20. 20.
    Conze J, Binnebosel M, Junge K, Schumpelick V (2010) Incisional hernia—how do I do it? Standard surgical approach. Chirurg 81:192–200PubMedCrossRefGoogle Scholar
  21. 21.
    Klinge U, Junge K, Mertens PR (2004) Herniosis: a biological approach. Hernia 8:300–301PubMedCrossRefGoogle Scholar
  22. 22.
    Klinge U, Krones CJ (2005) Can we be sure that the meshes do improve the recurrence rates? Hernia 9:1–2PubMedCrossRefGoogle Scholar
  23. 23.
    Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38PubMedCrossRefGoogle Scholar
  24. 24.
    Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12:188–196PubMedCrossRefGoogle Scholar
  25. 25.
    Junge K, Rosch R, Klinge U, Krones C, Klosterhalfen B, Mertens PR, Lynen P, Kunz D, Preiss A, Peltroche-Llacsahuanga H, Schumpelick V (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials 26:787–793PubMedCrossRefGoogle Scholar
  26. 26.
    Franz MG, Kuhn MA, Nguyen K, Wang X, Ko F, Wright TE, Robson MC (2001) Transforming growth factor beta(2) lowers the incidence of incisional hernias. J Surg Res 97:109–116PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11:1–18PubMedCrossRefGoogle Scholar
  29. 29.
    Jenney CR, Anderson JM (2000) Adsorbed IgG: a potent adhesive substrate for human macrophages. J Biomed Mater Res 50:281–290PubMedCrossRefGoogle Scholar
  30. 30.
    Jenney CR, Anderson JM (2000) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49:435–447PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson J, Ekdahl KN, Larsson R, Nilsson UR, Nilsson B (2002) C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J Immunol 168:5786–5791PubMedGoogle Scholar
  32. 32.
    Tengvall P, Askendal A, Lundstrom I (2001) I Ellipsometric in vitro studies on the activation of complement by human immunoglobulins M and G after adsorption to methylated silicon. Colloids Surf B Biointerfaces 20:51–62PubMedCrossRefGoogle Scholar
  33. 33.
    Vroman L, Adams AL, Klings M (1971) Interactions among human blood proteins at interfaces. Fed Proc 30:1494–1502PubMedGoogle Scholar
  34. 34.
    Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28:3273–3283PubMedCrossRefGoogle Scholar
  35. 35.
    Brash JL, Lyman DJ (1969) Adsorption of plasma proteins in solution to uncharged, hydrophobic polymer surfaces. J Biomed Mater Res 3:175–189PubMedCrossRefGoogle Scholar
  36. 36.
    Krishnan A, Cha P, Liu YH, Allara D, Vogler EA (2006) Interfacial energetics of blood plasma and serum adsorption to a hydrophobic self-assembled monolayer surface. Biomaterials 27:3187–3194PubMedCrossRefGoogle Scholar
  37. 37.
    Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44:82–94PubMedCrossRefGoogle Scholar
  38. 38.
    Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703PubMedCrossRefGoogle Scholar
  39. 39.
    Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34SPubMedCrossRefGoogle Scholar
  40. 40.
    Rhodes NP, Hunt JA, Williams DF (1997) Macrophage subpopulation differentiation by stimulation with biomaterials. J Biomed Mater Res 37:481–8PubMedCrossRefGoogle Scholar
  41. 41.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621PubMedCrossRefGoogle Scholar
  42. 42.
    Kyriakides TR, Foster MJ, Keeney GE, Tsai A, Giachelli CM, Clark-Lewis I, Rollins BJ, Bornstein P (2004) The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol 165:2157–2166PubMedCrossRefGoogle Scholar
  43. 43.
    Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83:585–596PubMedGoogle Scholar
  44. 44.
    Esche C, Stellato C, Beck LA (2005) Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125:615–628PubMedCrossRefGoogle Scholar
  45. 45.
    Brodbeck WG, Colton E, Anderson JM (2003) Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J Mater Sci Mater Med 14:671–675PubMedCrossRefGoogle Scholar
  46. 46.
    McNally AK, Anderson JM (1994) Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci USA 91:10119–10123PubMedCrossRefGoogle Scholar
  47. 47.
    Gallant ND, Garcia AJ (2007) Model of integrin-mediated cell adhesion strengthening. J Biomech 40:1301–1309PubMedCrossRefGoogle Scholar
  48. 48.
    Delon I, Brown NH (2007) Integrins and the actin cytoskeleton. Curr Opin Cell Biol 19:43–50PubMedCrossRefGoogle Scholar
  49. 49.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032PubMedCrossRefGoogle Scholar
  50. 50.
    McNally AK, Anderson JM (2002) Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 160:621–630PubMedCrossRefGoogle Scholar
  51. 51.
    Rose DM, Alon R, Ginsberg MH (2007) Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev 218:126–134PubMedCrossRefGoogle Scholar
  52. 52.
    Damsky CH, Ilic D (2002) Integrin signaling: it's where the action is. Curr Opin Cell Biol 14:594–602PubMedCrossRefGoogle Scholar
  53. 53.
    Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562PubMedCrossRefGoogle Scholar
  54. 54.
    Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP, Anderson JM (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA 99:10287–10292PubMedCrossRefGoogle Scholar
  55. 55.
    DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM (1997) Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J Immunol 158:3385–3390PubMedGoogle Scholar
  56. 56.
    Helming L, Gordon S (2007) Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol 37:33–42PubMedCrossRefGoogle Scholar
  57. 57.
    Jones JA, Dadsetan M, Collier TO, Ebert M, Stokes KS, Ward RS, Hiltner PA, Anderson JM (2004) Macrophage behavior on surface-modified polyurethanes. J Biomater Sci Polym Ed 15:567–584PubMedCrossRefGoogle Scholar
  58. 58.
    Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–522PubMedCrossRefGoogle Scholar
  59. 59.
    Henson PM (1971) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol 107:1535–1546PubMedGoogle Scholar
  60. 60.
    Henson PM (1971) The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol 107:1547–1557PubMedGoogle Scholar
  61. 61.
    Cozad MJ, Grant DA, Bachman SL, Grant DN, Ramshaw BJ, Grant SA (2010) Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater 94:455–462PubMedGoogle Scholar
  62. 62.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607PubMedCrossRefGoogle Scholar
  63. 63.
    Li AG, Quinn MJ, Siddiqui Y, Wood MD, Federiuk IF, Duman HM, Ward WK (2007) Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue. J Biomed Mater Res A 82:498–508PubMedGoogle Scholar
  64. 64.
    Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175:161–170PubMedCrossRefGoogle Scholar
  65. 65.
    Ward WK, Li AG, Siddiqui Y, Federiuk IF, Wang XJ (2008) Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants. J Biomater Sci Polym Ed 19:1065–1072PubMedCrossRefGoogle Scholar
  66. 66.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedGoogle Scholar
  67. 67.
    Xue M, Le NT, Jackson CJ (2006) Targeting matrix metalloproteases to improve cutaneous wound healing. Expert Opin Ther Targets 10:143–155PubMedCrossRefGoogle Scholar
  68. 68.
    Le NT, Xue M, Castelnoble LA, Jackson CJ (2007) The dual personalities of matrix metalloproteinases in inflammation. Front Biosci 12:1475–1487PubMedCrossRefGoogle Scholar
  69. 69.
    Ravi A, Garg P, Sitaraman SV (2007) Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis 13:97–107PubMedCrossRefGoogle Scholar
  70. 70.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839PubMedCrossRefGoogle Scholar
  71. 71.
    Jansen PL, Kever M, Rosch R, Krott E, Jansen M, Alfonso-Jaume A, Dooley S, Klinge U, Lovett DH, Mertens PR (2007) Polymeric meshes induce zonal regulation of matrix metalloproteinase-2 gene expression by macrophages and fibroblasts. FASEB J 21:1047–1057PubMedCrossRefGoogle Scholar
  72. 72.
    Luttikhuizen DT, Harmsen MC, Van Luyn MJ (2006) Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12:1955–1970PubMedCrossRefGoogle Scholar
  73. 73.
    Miller KM, Anderson JM (1989) In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers. J Biomed Mater Res 23:911–930PubMedCrossRefGoogle Scholar
  74. 74.
    Miller KM, Rose-Caprara V, Anderson JM (1989) Generation of IL-1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models. J Biomed Mater Res 23:1007–1026PubMedCrossRefGoogle Scholar
  75. 75.
    Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118PubMedCrossRefGoogle Scholar
  76. 76.
    Liebert TC, Chartoff RP, Cosgrove SL, McCuskey RS (1976) Subcutaneous implants of polypropylene filaments. J Biomed Mater Res 10:939–951PubMedCrossRefGoogle Scholar
  77. 77.
    Mary C, Marois Y, King MW, Laroche G, Douville Y, Martin L, Guidoin R (1998) Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery. ASAIO J 44:199–206PubMedCrossRefGoogle Scholar
  78. 78.
    Vinard E, Eloy R, Descotes J, Brudon JR, Guidicelli H, Magne JL, Patra P, Berruet R, Huc A, Chauchard J (1988) Stability of performances of vascular prostheses retrospective study of 22 cases of human implanted prostheses. J Biomed Mater Res 22:633–648PubMedCrossRefGoogle Scholar
  79. 79.
    Maarek JM, Guidoin R, Aubin M, Prud'homme RE (1984) Molecular weight characterization of virgin and explanted polyester arterial prostheses. J Biomed Mater Res 18:881–894PubMedCrossRefGoogle Scholar
  80. 80.
    Berger K, Suavage L (1980) Late fiber deterioration in Dacron arterial grafts. Ann Surg 193:477–491Google Scholar
  81. 81.
    Riepe G, Loos J, Imig H, Schroder A, Schneider E, Petermann J, Rogge A, Ludwig M, Schenke A, Nassutt R, Chakfe N, Morlock M (1997) Long-term in vivo alterations of polyester vascular grafts in humans. Eur J Vasc Endovasc Surg 13:540–548PubMedCrossRefGoogle Scholar
  82. 82.
    van der Lei B, Simmermacher RKJ, van Schilfgaarde R (1989) Expanded polytetrafluorethylene patch for the repair of large abdominal wall defects. Br J Surg 76:803–5PubMedCrossRefGoogle Scholar
  83. 83.
    Bellon JM, Contreras LA, Bujan J (2000) Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: clinical and experimental study. World J Surg 24:528–531PubMedCrossRefGoogle Scholar
  84. 84.
    Bellon JM, Contreras LA, Bujan J, Pascual G, Carrera-San Martin A (1999) Effect of relaparotomy through previously integrated polypropylene and polytetrafluoroethylene experimental implants in the abdominal wall. J Am Coll Surg 188:466–472PubMedCrossRefGoogle Scholar
  85. 85.
    Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–3493PubMedCrossRefGoogle Scholar
  86. 86.
    Urban E, King MW, Guidoin R, Laroche G, Marois Y, Martin L, Cardou A, Douville Y (1994) Why make monofilament sutures out of polyvinylidene fluoride? ASAIO J 40:145–156PubMedGoogle Scholar
  87. 87.
    Conze J, Junge K, Weiss C, Anurov M, Oettinger A, Klinge U, Schumpelick V (2008) New polymer for intra-abdominal meshes–PVDF copolymer. J Biomed Mater Res B Appl Biomater 87:321–328PubMedGoogle Scholar
  88. 88.
    Junge K, Binnebosel M, Rosch R, Jansen M, Kammer D, Otto J, Schumpelick V, Klinge U (2009) Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surg Endosc 23:327–333PubMedCrossRefGoogle Scholar
  89. 89.
    Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2:103–117PubMedCrossRefGoogle Scholar
  90. 90.
    Weyhe D, Schmitz I, Belyaev O, Grabs R, Muller KM, Uhl W, Zumtobel V (2006) Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg 30:1586–1591PubMedCrossRefGoogle Scholar
  91. 91.
    Weyhe D, Belyaev O, Muller C, Meurer K, Bauer KH, Papapostolou G, Uhl W (2007) Improving outcomes in hernia repair by the use of light meshes–a comparison of different implant constructions based on a critical appraisal of the literature. World J Surg 31:234–244PubMedCrossRefGoogle Scholar
  92. 92.
    Bellon JM, Jurado F, Garcia-Honduvilla N, Lopez R, Carrera-San Martin A, Bujan J (2002) The structure of a biomaterial rather than its chemical composition modulates the repair process at the peritoneal level. Am J Surg 184:154–159PubMedCrossRefGoogle Scholar
  93. 93.
    Muhl T, Binnebosel M, Klinge U, Goedderz T (2008) New objective measurement to characterize the porosity of textile implants. J Biomed Mater Res B Appl Biomater 84:176–183PubMedGoogle Scholar
  94. 94.
    Eichhorn SJ, Sampson WW (2005) Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2:309–318PubMedCrossRefGoogle Scholar
  95. 95.
    Clowes AW, Zacharias RK, Kirkman TR (1987) Early endothelial coverage of synthetic arterial grafts: porosity revisited. Am J Surg 153:501–504PubMedCrossRefGoogle Scholar
  96. 96.
    Tsukada H, Osada H (2004) Experimental study of a new tracheal prosthesis: pored Dacron tube. J Thorac Cardiovasc Surg 127:877–884PubMedCrossRefGoogle Scholar
  97. 97.
    Frosch KH, Barvencik F, Lohmann CH, Viereck V, Siggelkow H, Breme J, Dresing K, Sturmer KM (2002) Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs 170:214–227PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang Y, Xu HH, Takagi S, Chow LC (2006) In-situ hardening hydroxyapatite-based scaffold for bone repair. J Mater Sci Mater Med 17:437–445PubMedCrossRefGoogle Scholar
  99. 99.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRefGoogle Scholar
  100. 100.
    Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532PubMedCrossRefGoogle Scholar
  101. 101.
    Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 81:907–914PubMedCrossRefGoogle Scholar
  102. 102.
    Ayers RA, Simske SJ, Nunes CR, Wolford LM (1998) Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans. J Oral Maxillofac Surg 56:1297–1301PubMedCrossRefGoogle Scholar
  103. 103.
    Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 127–138Google Scholar
  104. 104.
    Deng X, Guidoin R (2000) Alternative blood conduits: assessment of whether the porosity of synthetic prostheses is the key to long-term biofunctionality. Med Biol Eng Comput 38:219–225PubMedCrossRefGoogle Scholar
  105. 105.
    Bragdon CR, Burke D, Lowenstein JD, O'Connor DO, Ramamurti B, Jasty M, Harris WH (1996) Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion. J Arthroplasty 11:945–951PubMedCrossRefGoogle Scholar
  106. 106.
    Zellin G, Linde A (1996) Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials 17:695–702PubMedCrossRefGoogle Scholar
  107. 107.
    Bertheville B (2006) Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute. Biomaterials 27:1246–1250PubMedCrossRefGoogle Scholar
  108. 108.
    Martakos P, Karwoski T (1995) Healing characteristics of hybrid and conventional polytetrafluoroethylene vascular grafts. ASAIO J 41:M735–M741PubMedCrossRefGoogle Scholar
  109. 109.
    Akers DL, Du YH, Kempczinski RF (1993) The effect of carbon coating and porosity on early patency of expanded polytetrafluoroethylene grafts: an experimental study. J Vasc Surg 18:10–15PubMedCrossRefGoogle Scholar
  110. 110.
    Saberski ER, Orenstein SB, Novitsky YW (2010) Anisotropic evaluation of synthetic surgical meshes. HerniaGoogle Scholar
  111. 111.
    Binnebosel M, Rosch R, Junge K, Flanagan TC, Schwab R, Schumpelick V, Klinge U (2007) Biomechanical analyses of overlap and mesh dislocation in an incisional hernia model in vitro. Surgery 142:365–371PubMedCrossRefGoogle Scholar
  112. 112.
    Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 63:765–771PubMedCrossRefGoogle Scholar
  113. 113.
    Engelsman AF, van Dam GM, van der Mei HC, Busscher HJ, Ploeg RJ (2010) In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg 251:133–137PubMedCrossRefGoogle Scholar
  114. 114.
    Junge K, Klinge U, Rosch R, Klosterhalfen B, Schumpelick V (2002) Functional and morphologic properties of a modified mesh for Inguinal hernia repair. World J Surg 26:1472–1480PubMedCrossRefGoogle Scholar
  115. 115.
    Rosch R, Junge K, Quester R, Klinge U, Klosterhalfen B, Schumpelick V (2003) Vypro II mesh in hernia repair: impact of polyglactin on long-term incorporation in rats. Eur Surg Res 35:445–450PubMedCrossRefGoogle Scholar
  116. 116.
    Bellon JM, Rodriguez M, Garcia-Honduvilla N, Gomez-Gil V, Pascual G, Bujan J (2008) Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia. J Invest Surg 21:280–287PubMedCrossRefGoogle Scholar
  117. 117.
    Bellon JM, Rodriguez M, Garcia-Honduvilla N, Pascual G, Bujan J (2007) Partially absorbable meshes for hernia repair offer advantages over nonabsorbable meshes. Am J Surg 194:68–74PubMedCrossRefGoogle Scholar
  118. 118.
    Weyhe D, Belyaev O, Buettner G, Mros K, Mueller C, Meurer K, Papapostolou G, Uhl W (2008) In vitro comparison of three different mesh constructions. ANZ J Surg 78:55–60PubMedCrossRefGoogle Scholar
  119. 119.
    Junge K, Rosch R, Krones CJ, Klinge U, Mertens PR, Lynen P, Schumpelick V, Klosterhalfen B (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9:212–217PubMedCrossRefGoogle Scholar
  120. 120.
    Otto J, Binnebosel M, Pietsch S, Anurov M, Titkova S, Ottinger AP, Jansen M, Rosch R, Kammer D, Klinge U (2010) Large-pore PDS mesh compared to small-pore PG mesh. J Invest Surg 23:190–196PubMedCrossRefGoogle Scholar
  121. 121.
    Gruber-Blum S, Petter-Puchner AH, Brand J, Fortelny RH, Walder N, Oehlinger W, Koenig F, Redl H (2010) Comparison of three separate antiadhesive barriers for intraperitoneal onlay mesh hernia repair in an experimental model. Br J SurgGoogle Scholar
  122. 122.
    Loury JN, Chevrel JP (1983) Treatment of ventral hernias. Simultaneous use of polyglactin 910 and dacron mesh (letter). Presse Méd 12(2116 issn):0755–4982Google Scholar
  123. 123.
    Vries Reilingh TS, van Goor H, Koppe MJ, Bodegom ME, Hendriks T, Bleichrodt RP (2007) Interposition of polyglactin mesh does not prevent adhesion formation between viscera and polypropylene mesh. J Surg Res 140:27–30PubMedCrossRefGoogle Scholar
  124. 124.
    Conze J, Junge K, Klinge U, Weiss C, Polivoda M, Oettinger AP, Schumpelick V (2005) Intraabdominal adhesion formation of polypropylene mesh. Influence of coverage of omentum and polyglactin. Surg Endosc 19:798–803PubMedCrossRefGoogle Scholar
  125. 125.
    Bellon JM, Rodriguez M, Garcia-Honduvilla N, Pascual G, Gomez GV, Bujan J (2007) Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequential laparoscopy. J Laparoendosc Adv Surg Tech A 1:160–166Google Scholar
  126. 126.
    Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus proceed versus parietex composite. Surg Endosc 21:629–633PubMedCrossRefGoogle Scholar
  127. 127.
    Judge TW, Parker DM, Dinsmore RC (2007) Abdominal wall hernia repair: a comparison of sepramesh and parietex composite mesh in a rabbit hernia model. J Am Coll Surg 204:276–281PubMedCrossRefGoogle Scholar
  128. 128.
    Emans PJ, Schreinemacher MH, Gijbels MJ, Beets GL, Greve JW, Koole LH, Bouvy ND (2009) Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term? Ann Biomed Eng 37:410–418PubMedCrossRefGoogle Scholar
  129. 129.
    Schreinemacher MH, Emans PJ, Gijbels MJ, Greve JW, Beets GL, Bouvy ND (2009) Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br J Surg 96:305–313PubMedCrossRefGoogle Scholar
  130. 130.
    van't RM, de Vos van Steenwijk PJ, Bonthuis F, Marquet RL, Steyerberg EW, Jeekel J, Bonjer HJ (2003) Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Ann Surg 237:123–128CrossRefGoogle Scholar
  131. 131.
    Vrijland WW, Bonthuis F, Steyerberg EW, Marquet RL, Jeekel J, Bonjer HJ (2000) Peritoneal adhesions to prosthetic materials: choice of mesh for incisional hernia repair. Surg Endosc 14:960–963PubMedCrossRefGoogle Scholar
  132. 132.
    Burger JW, Halm JA, Wijsmuller AR, ten Raa S, Jeekel J (2006) Evaluation of new prosthetic meshes for ventral hernia repair. Surg Endosc 20:1320–1325PubMedCrossRefGoogle Scholar
  133. 133.
    Chelala E, Debardemaeker Y, Elias B, Charara F, Dessily M, Alle JL (2010) Eighty-five redo surgeries after 733 laparoscopic treatments for ventral and incisional hernia: adhesion and recurrence analysis. Hernia 14:123–129PubMedCrossRefGoogle Scholar
  134. 134.
    Wassenaar EB, Schoenmaeckers EJ, Raymakers JT, Rakic S (2010) Subsequent abdominal surgery after laparoscopic ventral and incisional hernia repair with an expanded polytetrafluoroethylene mesh: a single institution experience with 72 reoperations. Hernia 14:137–142PubMedCrossRefGoogle Scholar
  135. 135.
    Zinther NB, Zeuten A, Marinovskij E, Haislund M, Friis-Andersen H (2010) Functional cine MRI and transabdominal ultrasonography for the assessment of adhesions to implanted synthetic mesh 5–7 years after laparoscopic ventral hernia repair. Hernia 14:499–504PubMedCrossRefGoogle Scholar
  136. 136.
    Jenkins ED, Yom V, Melman L, Brunt LM, Eagon JC, Frisella MM, Matthews BD (2010) Prospective evaluation of adhesion characteristics to intraperitoneal mesh and adhesiolysis-related complications during laparoscopic re-exploration after prior ventral hernia repair. Surg Endosc 24:3002–3007PubMedCrossRefGoogle Scholar
  137. 137.
    Shastri VP (2003) Non-degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 4:331–337PubMedCrossRefGoogle Scholar
  138. 138.
    Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces 18:197–219PubMedCrossRefGoogle Scholar
  139. 139.
    Shen M, Horbett TA (2001) The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res 57:336–345PubMedCrossRefGoogle Scholar
  140. 140.
    de Vos P, van Hoogmoed CG, de Haan BJ, Busscher HJ (2002) Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. J Biomed Mater Res 62:430–437PubMedCrossRefGoogle Scholar
  141. 141.
    de Vos P, Hoogmoed CG, Busscher HJ (2002) Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 60:252–259PubMedCrossRefGoogle Scholar
  142. 142.
    Vercruysse KP, Prestwich GD (1998) Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 15:513–555PubMedGoogle Scholar
  143. 143.
    Uchegbu IF, Schatzlein AG, Tetley L, Gray AI, Sludden J, Siddique S, Mosha E (1998) Polymeric chitosan-based vesicles for drug delivery. J Pharm Pharmacol 50:453–458PubMedCrossRefGoogle Scholar
  144. 144.
    Borchard G, Junginger HE (2001) Modern drug delivery applications of chitosan. Adv Drug Deliv Rev 52:103PubMedCrossRefGoogle Scholar
  145. 145.
    Sano A, Hojo T, Maeda M, Fujioka K (1998) Protein release from collagen matrices. Adv Drug Deliv Rev 31:247–266PubMedCrossRefGoogle Scholar
  146. 146.
    Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629PubMedCrossRefGoogle Scholar
  147. 147.
    Draye JP, Delaey B, Van de Voorde A, Van Den Bulcke A, De Reu B, Schacht E (1998) In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687PubMedCrossRefGoogle Scholar
  148. 148.
    Draye JP, Delaey B, Van de Voorde A, Van Den Bulcke A, Bogdanov B, Schacht E (1998) In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:99–107PubMedCrossRefGoogle Scholar
  149. 149.
    Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102PubMedCrossRefGoogle Scholar
  150. 150.
    Athanasiou KA, Niederauer GG, Agrawal CM, Landsman AS (1995) Applications of biodegradable lactides and glycolides in podiatry. Clin Podiatr Med Surg 12:475–95PubMedGoogle Scholar
  151. 151.
    Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24PubMedCrossRefGoogle Scholar
  152. 152.
    Espadas-Torre C, Meyerhoff ME (1995) Thrombogenic properties of untreated and poly(ethylene oxide)-modified polymeric matrices useful for preparing intraarterial ion-selective electrodes. Anal Chem 67:3108–3114PubMedCrossRefGoogle Scholar
  153. 153.
    Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691PubMedCrossRefGoogle Scholar
  154. 154.
    Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, Sugiyama M, Annaka M (2006) Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr Eye Res 31:599–606PubMedCrossRefGoogle Scholar
  155. 155.
    Voskerician G, Jin J, White MF, Williams CP, Rosen MJ (2010) Effect of biomaterial design criteria on the performance of surgical meshes for abdominal hernia repair: a pre-clinical evaluation in a chronic rat model. J Mater Sci Mater Med 21:1989–1995PubMedCrossRefGoogle Scholar
  156. 156.
    Schug-Pass C, Sommerer F, Tannapfel A, Lippert H, Kockerling F (2009) The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibily?: experimental results obtained in a laparoscopic porcine model. Surg Endosc 23:487–495PubMedCrossRefGoogle Scholar
  157. 157.
    Murphy JL, Vollenweider L, Xu F, Lee BP (2010) Adhesive performance of biomimetic adhesive-coated biologic scaffolds. BiomacromoleculesGoogle Scholar
  158. 158.
    Junge K, Rosch R, Anurov M, Titkova S, Ottinger A, Klinge U, Schumpelick V (2006) Modification of collagen formation using supplemented mesh materials. Hernia 10:492–497PubMedCrossRefGoogle Scholar
  159. 159.
    Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133:378–82PubMedCrossRefGoogle Scholar
  160. 160.
    Kumar S (1999) Chronic groin sepsis following tension-free inguinal hernioplasty [letter; comment]. Br J Surg 86:1482PubMedGoogle Scholar
  161. 161.
    White TJ, Santos MC, Thompson JS (1998) Factors affecting wound complications in repair of ventral hernias. Am Surg 64:276–80PubMedGoogle Scholar
  162. 162.
    Deysine M (1998) Pathophysiology, prevention, and management of prosthetic infections in hernia surgery. Surg Clin North Am 78:1105–15PubMedCrossRefGoogle Scholar
  163. 163.
    Taylor EW, Byrne DJ, Leaper DJ, Karran SJ, Browne MK, Mitchell KJ (1997) Antibiotic prophylaxis and open groin hernia repair. World J Surg 21:811–814PubMedCrossRefGoogle Scholar
  164. 164.
    Rios A, Rodriguez JM, Munitiz V, Alcaraz P, Perez FD, Parrilla P (2001) Antibiotic prophylaxis in incisional hernia repair using a prosthesis. Hernia 5:148–152PubMedCrossRefGoogle Scholar
  165. 165.
    Lazorthes F, Chiotasso P, Massip P, Materre JP, Sarkissian M (1992) Local antibiotic prophylaxis in inguinal hernia repair. Surg Gynecol Obstet 175:569–570PubMedGoogle Scholar
  166. 166.
    Musella M, Guido A, Musella S (2001) Collagen tampons as aminoglycoside carriers to reduce postoperative infection rate in prosthetic repair of groin hernias. Eur J Surg 167:130–132PubMedCrossRefGoogle Scholar
  167. 167.
    Bandyk DF (2002) Antibiotics-why so many and when should we use them? Semin Vasc Surg 15:268–274PubMedCrossRefGoogle Scholar
  168. 168.
    Pratesi C, Russo D, Dorigo W, Chiti E (2001) Antibiotic prophylaxis in clean surgery: vascular surgery. J Chemother 13(Spec No 1):123–128PubMedGoogle Scholar
  169. 169.
    Murray WR (1984) Use of antibiotic-containing bone cement. Clin Orthop 89-95Google Scholar
  170. 170.
    McQueen MM, Hughes SP, May P, Verity L (1990) Cefuroxime in total joint arthroplasty. Intravenous or in bone cement. J Arthroplasty 5:169–172PubMedCrossRefGoogle Scholar
  171. 171.
    Gilbert AI, Felton LL (1993) Infection in inguinal hernia repair considering biomaterials and antibiotics [published erratum appears in Surg Gynecol Obstet 1993 Nov;177(5):528]. Surg Gynecol Obstet 177:126–130PubMedGoogle Scholar
  172. 172.
    Deysine M (2004) Infections associated with surgical implants. N Engl J Med 351:193–195PubMedCrossRefGoogle Scholar
  173. 173.
    Badiou W, Lavigne JP, Bousquet PJ, O'Callaghan D, Mares P, de Tayrac R (2010) In vitro and in vivo assessment of silver-coated polypropylene mesh to prevent infection in a rat model. Int Urogynecol J Pelvic Floor DysfunctGoogle Scholar
  174. 174.
    Franklin ME Jr, Gonzalez JJ Jr, Michaelson RP, Glass JL, Chock DA (2002) Preliminary experience with new bioactive prosthetic material for repair of hernias in infected fields. Hernia 6:171–174PubMedCrossRefGoogle Scholar
  175. 175.
    Dubay DA, Wang X, Kuhn MA, Robson MC, Franz MG (2004) The prevention of incisional hernia formation using a delayed-release polymer of basic fibroblast growth factor. Ann Surg 240:179–186PubMedCrossRefGoogle Scholar
  176. 176.
    Robson MC, Dubay DA, Wang X, Franz MG (2004) Effect of cytokine growth factors on the prevention of acute wound failure. Wound Repair Regen 12:38–43PubMedCrossRefGoogle Scholar
  177. 177.
    Korenkov M, Yuecel N, Koebke J, Schierholz J, Morsczeck C, Tasci I, Neugebauer EA, Nagelschmidt M (2005) Local administration of TGF-beta1 to reinforce the anterior abdominal wall in a rat model of incisional hernia. HerniaGoogle Scholar
  178. 178.
    Orenstein SB, Saberski ER, Klueh U, Kreutzer DL, Novitsky YW (2010) Effects of mast cell modulation on early host response to implanted synthetic meshes. Hernia 14:511–516PubMedCrossRefGoogle Scholar
  179. 179.
    Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 95:8841–8846PubMedCrossRefGoogle Scholar
  180. 180.
    Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 18:335–350PubMedCrossRefGoogle Scholar
  181. 181.
    Mullonkal CJ, Toledo-Pereyra LH (2007) Akt in ischemia and reperfusion. J Invest Surg 20:195–203PubMedCrossRefGoogle Scholar
  182. 182.
    Schaffer M, Bongartz M, Hoffmann W, Viebahn R (2006) Regulation of nitric oxide synthesis in wounds by IFN-gamma depends on TNF-alpha. J Invest Surg 19:371–379PubMedCrossRefGoogle Scholar
  183. 183.
    Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160PubMedCrossRefGoogle Scholar
  184. 184.
    Park JY, Pillinger MH (2007) Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis 65(Suppl 1):S4–10PubMedGoogle Scholar
  185. 185.
    Mudter J, Neurath MF (2007) Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis 13:1016–1023PubMedCrossRefGoogle Scholar
  186. 186.
    Di Vita G, D'Agostino P, Patti R, Arcara M, Caruso G, Davi V, Cillari E (2005) Acute inflammatory response after inguinal and incisional hernia repair with implantation of polypropylene mesh of different size. Langenbecks Arch Surg 390:306–311PubMedCrossRefGoogle Scholar
  187. 187.
    Junge K, Binnebosel M, Rosch R, Otto J, Kammer D, Schumpelick V, Klinge U (2009) Impact of proinflammatory cytokine knockout on mesh integration. J Invest Surg 22:256–262PubMedCrossRefGoogle Scholar
  188. 188.
    Junge K, Klinge U, Rosch R, Lynen P, Binnebosel M, Conze J, Mertens PR, Schwab R, Schumpelick, V (2007) Improved collagen type I/III ratio at the interface of gentamicin-supplemented polyvinylidenfluoride mesh materials. Langenbecks Arch SurgGoogle Scholar
  189. 189.
    Binnebosel M, Ricken C, Klink CD, Junge K, Jansen M, Schumpelick V, Lynen JP (2010) Impact of gentamicin-supplemented polyvinylidenfluoride mesh materials on MMP-2 expression and tissue integration in a transgenic mice model. Langenbecks Arch Surg 395:413–420PubMedCrossRefGoogle Scholar
  190. 190.
    Tekos A, Prodromaki E, Papadimou E, Pavlidou D, Tsambaos D, Drainas D (2003) Aminoglycosides suppress tRNA processing in human epidermal keratinocytes in vitro. Skin Pharmacol Appl Skin Physiol 16:252–258PubMedCrossRefGoogle Scholar
  191. 191.
    Sacha PT, Zaremba ML, Jakoniuk P (1999) The influence of antibiotics on phagocytic and bacteriocidal activity of rabbit peritoneal macrophages stimulated by filtrates of cultured t-lymphocytes. Med Dosw Mikrobiol 51:399–412PubMedGoogle Scholar
  192. 192.
    Keeling KM, Bedwell DM (2002) Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 80:367–376PubMedCrossRefGoogle Scholar
  193. 193.
    Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L, Kerem B, Kerem E (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441PubMedCrossRefGoogle Scholar
  194. 194.
    Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, Greer H, Hong J, Wing L, Macaluso M, Lyrene R, Sorscher EJ, Bedwell DM (2001) Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 163:1683–1692PubMedGoogle Scholar
  195. 195.
    Wrzesniok D, Buszman E, Karna E, Nawrat P, Palka J (2002) Melanin potentiates gentamicin-induced inhibition of collagen biosynthesis in human skin fibroblasts. Eur J Pharmacol 446:7–13PubMedCrossRefGoogle Scholar
  196. 196.
    Asch HL, Farnham PJ (1978) Effects of gentamicin on trypsin, chymotrypsin, and collagenase. J Infect Dis 138:257–259PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karsten Junge
    • 1
  • Marcel Binnebösel
    • 1
  • Klaus T. von Trotha
    • 1
  • Raphael Rosch
    • 1
  • Uwe Klinge
    • 1
  • Ulf P. Neumann
    • 1
  • Petra Lynen Jansen
    • 1
  1. 1.Department of General, Visceral and Transplantation SurgeryUniversity Hospital of the RWTH AachenAachenGermany

Personalised recommendations