Langenbeck's Archives of Surgery

, Volume 396, Issue 2, pp 251–259 | Cite as

Is the function of alveolar macrophages altered following blunt chest trauma?

  • Ulrich C. Liener
  • Mario Perl
  • Markus S. Huber-Lang
  • Daniel H. Seitz
  • Uwe B. Brückner
  • Florian Gebhard
  • Markus W. Knöferl
Original Article

Abstract

Purpose

The purpose of this study was to characterize the local pulmonary inflammatory environment and to elucidate alterations of alveolar macrophage (AMØ) functions after blunt chest trauma.

Methods

Wistar rats were subjected to blunt chest trauma. AMØ were isolated, stimulated, and cultured. Bronchoalveolar lavage (BAL) was collected. Cytokines/chemokines were quantified in the BAL and in AMØ supernatants via ELISA. AMØ phagocytic and chemotactic activity and respiratory burst capacity were assessed.

Results

Following chest trauma, a significant increase of IL-1β (at 6 and 24 h) and IL-6 (at 24 h) in BAL was observed, whereas IL-10 and TNF-α concentrations were not altered. MIP-2 and CINC were substantially increased as early as 6 h and PGE2 early at 10 min, whereas BAL MCP-1 was not elevated until 24 h after trauma. MIP-2 release by AMØ isolated form trauma animals was markedly increased as early as 10 min after injury. IL-1β and IL-10 exhibited a late increase at 24 h. AMØ TNF-α release was increased at 6 h. At 6 or 24 h, AMØ from trauma animals incorporated significantly more opsonized latex beads than their sham controls, and their chemotactic activity was substantially enhanced at 24 h. AMØ oxidative burst capacity remained largely unchanged.

Conclusions

Already very early after chest trauma, inflammatory mediators are present in the intraalveolar compartment. Additionally, AMØ are primed to release cytokines and chemokines. Blunt chest trauma also changes the phagocytic and chemotactic activity of AMØ. These functional changes of AMØ might enable them to better ward off potential pathogens in the course after trauma.

Keywords

Lung contusion Thoracic trauma Immune dysfunction 

References

  1. 1.
    Minino AM, Heron MP, Smith BL (2006) Deaths: preliminary data for 2004. Natl Vital Stat Rep 54(19):1–49Google Scholar
  2. 2.
    Boyd AD, Glassman LR (1997) Trauma to the lung. Chest Surg Clin N Am 7(2):263–284PubMedGoogle Scholar
  3. 3.
    Trupka A, Nast-Kolb D, Schweiberer L (1998) Thoracic trauma. Unfallchirurg 101(4):244–258CrossRefPubMedGoogle Scholar
  4. 4.
    Pepe PE, Potkin RT, Reus DH, Hudson LD, Carrico CJ (1982) Clinical predictors of the adult respiratory distress syndrome. Am J Surg 144(1):124–130CrossRefPubMedGoogle Scholar
  5. 5.
    Miller PR, Croce MA, Bee TK, Qaisi WG, Smith CP, Collins GL, Fabian TC (2001) ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J Trauma 51(2):223–228CrossRefPubMedGoogle Scholar
  6. 6.
    Perl M, Gebhard F, Brückner UB, Ayala A, Braumüller S, Büttner C, Kinzl L, Knöferl MW (2005) Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge. Crit Care Med 33(6):1351–1358CrossRefPubMedGoogle Scholar
  7. 7.
    Perl M, Gebhard F, Braumüller S, Tauchmann B, Brückner UB, Kinzl L, Knöferl MW (2006) The pulmonary and hepatic immune microenvironment and its contribution to the early systemic inflammation following blunt chest trauma. Crit Care Med 34(4):1152–1159CrossRefPubMedGoogle Scholar
  8. 8.
    Knöferl MW, Liener U, Seitz D, Perl M, Brückner UB, Kinzl L, Gebhard F (2003) Cardiopulmonary, histological and inflammatory alterations following lung contusion in a novel mouse model of blunt chest trauma. Shock 19(6):519–525CrossRefPubMedGoogle Scholar
  9. 9.
    Knöferl MW, Liener UC, Perl M, Brückner UB, Kinzl L, Gebhard F (2004) Blunt chest trauma induces delayed splenic immunosuppression. Shock 22(1):51–56CrossRefPubMedGoogle Scholar
  10. 10.
    Liener UC, Knöferl MW, Sträter J, Barth TF, Pauser EM, Nüssler AK, Kinzl L, Brückner UB, Gebhard F (2003) Induction of apoptosis following blunt chest trauma. Shock 20(6):511–516CrossRefPubMedGoogle Scholar
  11. 11.
    Seitz DH, Perl M, Mangold S, Neddermann A, Braumüller ST, Zhou S, Bachem MG, Huber-Lang MS, Knöferl MW (2008) Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils. Shock 30(5):537–544CrossRefPubMedGoogle Scholar
  12. 12.
    Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89PubMedGoogle Scholar
  13. 13.
    Huber-Lang M, Sarma VJ, Lu KT, McGuire SR, Padgaonkar VA, Guo RF, Younkin EM, Kunkel RG, Ding J, Erickson R, Curnutte JT, Ward PA (2001) Role of C5a in multiorgan failure during sepsis. J Immunol 166(2):1193–1199PubMedGoogle Scholar
  14. 14.
    Huber-Lang MS, Younkin EM, Sarma JV, McGuire SR, Lu KT, Guo RF, Padgaonkar VA, Curnutte JT, Erickson R, Ward PA (2002) Complement-induced impairment of innate immunity during sepsis. J Immunol 169(6):3223–3231PubMedGoogle Scholar
  15. 15.
    Czermak BJ, Sarma V, Pierson CL, Warner RL, Huber-Lang M, Bless NM, Schmal H, Friedl HP, Ward PA (1999) Protective effects of C5a blockade in sepsis. Nat Med 5(7):788–792CrossRefPubMedGoogle Scholar
  16. 16.
    Gibbs DF, Warner RL, Weiss SJ, Johnson KJ, Varani J (1999) Characterization of matrix metalloproteinases produced by rat alveolar macrophages. Am J Respir Cell Mol Biol 20(6):1136–1144PubMedGoogle Scholar
  17. 17.
    Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141(2):471–501PubMedGoogle Scholar
  18. 18.
    Souza AL Jr, Poggetti RS, Fontes B, Birolini D (2000) Gut ischemia/reperfusion activates lung macrophages for tumor necrosis factor and hydrogen peroxide production. J Trauma 49(2):232–236CrossRefPubMedGoogle Scholar
  19. 19.
    Fels AO, Cohn ZA (1986) The alveolar macrophage. J Appl Physiol 60(2):353–369PubMedGoogle Scholar
  20. 20.
    Davis KA, Fabian TC, Croce MA, Proctor KG (1999) Prostanoids: early mediators in the secondary injury that develops after unilateral pulmonary contusion. J Trauma 46(5):824–831CrossRefPubMedGoogle Scholar
  21. 21.
    Hellinger A, Konerding MA, Malkusch W, Obertacke U, Redl H, Bruch J, Schlag G (1995) Does lung contusion affect both the traumatized and the noninjured lung parenchyma? A morphological and morphometric study in the pig. J Trauma 39(4):712–719CrossRefPubMedGoogle Scholar
  22. 22.
    Obertacke U, Neudeck F, Majetschak M, Hellinger A, Kleinschmidt C, Schade FU, Hogasen K, Jochum M, Strohmeier W, Thurnher M, Redl H, Schlag G (1998) Local and systemic reactions after lung contusion: an experimental study in the pig. Shock 10(1):7–12CrossRefPubMedGoogle Scholar
  23. 23.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349CrossRefPubMedGoogle Scholar
  24. 24.
    Keel M, Ecknauer E, Stocker R, Ungethum U, Steckholzer U, Kenney J, Gallati H, Trentz O, Ertel W (1996) Different pattern of local and systemic release of proinflammatory and anti-inflammatory mediators in severely injured patients with chest trauma. J Trauma 40(6):907–912CrossRefPubMedGoogle Scholar
  25. 25.
    Gebhard F, Kelbel MW, Strecker W, Kinzl L, Brückner UB (1997) Chest trauma and its impact on the release of vasoactive mediators. Shock 7(5):313–317CrossRefPubMedGoogle Scholar
  26. 26.
    Strecker W, Gebhard F, Rager J, Steinbach G, Ring C, Perl M, Kinzl L, Beck A (2002) Interleukin-6 (IL-6) - an early marker of chest trauma. Eur J Trauma 28:75–84CrossRefGoogle Scholar
  27. 27.
    Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Brückner UB (2000) Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg 135(3):291–295CrossRefPubMedGoogle Scholar
  28. 28.
    Mauel J, Ransijn A, Corradin SB, Buchmuller-Rouiller Y (1995) Effect of PGE2 and of agents that raise cAMP levels on macrophage activation induced by IFN-gamma and TNF-alpha. J Leukoc Biol 58(2):217–224PubMedGoogle Scholar
  29. 29.
    Melton SM, Davis KA, Moomey CB Jr, Fabian TC, Proctor KG (1999) Mediator-dependent secondary injury after unilateral blunt thoracic trauma. Shock 11(6):396–402PubMedGoogle Scholar
  30. 30.
    Ayala A, Chung CS, Song GY, Chaudry IH (2001) IL-10 mediation of activation-induced TH1 cell apoptosis and lymphoid dysfunction in polymicrobial sepsis. Cytokine 14(1):37–48CrossRefPubMedGoogle Scholar
  31. 31.
    Eppinger MJ, Ward PA, Bolling SF, Deeb GM (1996) Regulatory effects of interleukin-10 on lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 112(5):1301–1305CrossRefPubMedGoogle Scholar
  32. 32.
    Shanley TP, Vasi N, Denenberg A (2000) Regulation of chemokine expression by IL-10 in lung inflammation. Cytokine 12(7):1054–1064CrossRefPubMedGoogle Scholar
  33. 33.
    Muehlstedt SG, Lyte M, Rodriguez JL (2002) Increased IL-10 production and HLA-DR suppression in the lungs of injured patients precede the development of nosocomial pneumonia. Shock 17(6):443–450CrossRefPubMedGoogle Scholar
  34. 34.
    Song GY, Chung CS, Chaudry IH, Ayala A (1999) What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 126(2):378–383PubMedGoogle Scholar
  35. 35.
    Grattendick K, Stuart R, Roberts E, Lincoln J, Lefkowitz SS, Bollen A, Moguilevsky N, Friedman H, Lefkowitz DL (2002) Alveolar macrophage activation by myeloperoxidase: a model for exacerbation of lung inflammation. Am J Respir Cell Mol Biol 26(6):716–722PubMedGoogle Scholar
  36. 36.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127CrossRefPubMedGoogle Scholar
  37. 37.
    Martin TR (2008) Interactions between mechanical and biological processes in acute lung injury. Proc Am Thorac Soc 5(3):291–296CrossRefPubMedGoogle Scholar
  38. 38.
    Iwaki M, Ito S, Morioka M, Iwata S, Numaguchi Y, Ishii M, Kondo M, Kume H, Naruse K, Sokabe M, Hasegawa Y (2009) Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells. Biochem Biophys Res Commun 389(3):531–536CrossRefPubMedGoogle Scholar
  39. 39.
    Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12(2):232–237PubMedGoogle Scholar
  40. 40.
    Call DR, Nemzek JA, Ebong SJ, Bolgos GR, Newcomb DE, Wollenberg GK, Remick DG (2001) Differential local and systemic regulation of the murine chemokines KC and MIP2. Shock 15(4):278–284CrossRefPubMedGoogle Scholar
  41. 41.
    Teodorczyk-Injeyan JA, Cembrzynska-Nowak M, Lalani S, Peters WJ, Mills GB (1995) Immune deficiency following thermal trauma is associated with apoptotic cell death. J Clin Immunol 15(6):318–328CrossRefPubMedGoogle Scholar
  42. 42.
    Borges VM, Vandivier RW, McPhillips KA, Kench JA, Morimoto K, Groshong SD, Richens TR, Graham BB, Muldrow AM, Van HL, Henson PM, Janssen WJ (2009) TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol Lung Cell Mol Physiol 297(4):L586–L595CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ulrich C. Liener
    • 1
  • Mario Perl
    • 1
  • Markus S. Huber-Lang
    • 1
  • Daniel H. Seitz
    • 1
  • Uwe B. Brückner
    • 2
  • Florian Gebhard
    • 1
  • Markus W. Knöferl
    • 1
  1. 1.Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Ulm - Surgical CenterUlmGermany
  2. 2.Division of Surgical Research, Department of Visceral and Transplantation SurgeryUniversity Hospital of UlmUlmGermany

Personalised recommendations