Advertisement

Langenbeck's Archives of Surgery

, Volume 395, Issue 8, pp 1147–1155 | Cite as

Microvascular response to calcium phosphate bone substitutes: an intravital microscopy analysis

  • Bernd Roetman
  • Andrej Ring
  • Stefan Langer
  • Thomas A. Schildhauer
  • Gert Muhr
  • Manfred Köller
Original Article

Abstract

Objectives

The purpose was to evaluate inflammatory and microcirculatory reactions after implantation of various calcium phosphate bone substitutes in an in vivo model.

Methods

Calcium phosphate-based bone substitutes were implanted in dorsal skinfold chambers of mice. Intravital fluorescence microscopy was performed to measure inflammatory and microcirculatory reactions based on functional vessel density (FVD), capillary leakage, and relative white blood cell velocity (rWBCV).

Results

An increase of FVD was observed in all groups and the capillary leakage grew with a level of significance (p < 0.001). The fraction of rolling and sticking leukocytes (rWBCV) was highest at the beginning of the trial and decreased during the course.

Conclusions

There are differences in microvascular soft tissue reactions between various calcium phosphate bone substitutes, but inflammatory reactions were moderate, and the results revealed no reasons which explain the sporadic failure of the tested substances under clinical conditions.

Keywords

Fluorescence microscopy Dorsal skinfold chamber Resorbable bone substitutes Inflammatory reaction Microvascular response 

References

  1. 1.
    Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci 362:2821–2850CrossRefPubMedGoogle Scholar
  2. 2.
    Hak DJ (2007) The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 15:525–536PubMedGoogle Scholar
  3. 3.
    Heini PF, Berlemann U (2001) Bone substitutes in vertebroplasty. Eur Spine J 10(Suppl 2):S205–S213PubMedGoogle Scholar
  4. 4.
    Delloye C, Cnockaert N, Cornu O (2003) Bone substitutes in 2003: an overview. Acta Orthop Belg 69:1–8PubMedGoogle Scholar
  5. 5.
    Parikh SN (2002) Bone graft substitutes: past, present, future. J Postgrad Med 48:142–148PubMedGoogle Scholar
  6. 6.
    Del Real RP, Ooms E, Wolke JG, Vallet-Regi M, Jansen JA (2003) In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res 65A:30–36CrossRefGoogle Scholar
  7. 7.
    Welkerling H, Raith J, Kastner N, Marschall C, Windhager R (2003) Painful soft-tissue reaction to injectable Norian SRS calcium phosphate cement after curettage of enchondromas. J Bone Jt Surg Br 85:238–239CrossRefGoogle Scholar
  8. 8.
    Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 16:143–149CrossRefPubMedGoogle Scholar
  9. 9.
    Gomez E, Martin M, Arias J, Carceller F (2005) Clinical applications of Norian SRS (calcium phosphate cement) in craniofacial reconstruction in children: our experience at Hospital La Paz since 2001. J Oral Maxillofac Surg 63:8–14CrossRefPubMedGoogle Scholar
  10. 10.
    Elsner A, Jubel A, Prokop A, Koebke J, Rehm KE, Andermahr J (2005) Augmentation of intraarticular calcaneal fractures with injectable calcium phosphate cement: densitometry, histology, and functional outcome of 18 patients. J Foot Ankle Surg 44:390–395CrossRefPubMedGoogle Scholar
  11. 11.
    Baker SB, Weinzweig J, Kirschner RE, Bartlett SP (2002) Applications of a new carbonated calcium phosphate bone cement: early experience in pediatric and adult craniofacial reconstruction. Plast Reconstr Surg 109:1789–1796CrossRefPubMedGoogle Scholar
  12. 12.
    Schildhauer TA, Bauer TW, Josten C, Muhr G (2000) Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma 14:309–317CrossRefPubMedGoogle Scholar
  13. 13.
    Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K (1999) Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res 48:36–42CrossRefPubMedGoogle Scholar
  14. 14.
    Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M (2003) Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 24:2739–2747CrossRefPubMedGoogle Scholar
  15. 15.
    Schildhauer TA, Chapman JR, Muhr G, Koller M (2006) Cytokine release of mononuclear leukocytes (PBMC) after contact to a carbonated calcium phosphate bone cement. J Biomed Mater Res A 78:104–109PubMedGoogle Scholar
  16. 16.
    Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):S75–S80CrossRefPubMedGoogle Scholar
  17. 17.
    Marino JT, Ziran BH (2010) Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am 41:15–26CrossRefPubMedGoogle Scholar
  18. 18.
    Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14:1324–1331CrossRefPubMedGoogle Scholar
  19. 19.
    Shimazaki K, Mooney V (1985) Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res 3:301–310CrossRefPubMedGoogle Scholar
  20. 20.
    Koerten HK, van der Meulen J (1999) Degradation of calcium phosphate ceramics. J Biomed Mater Res 44:78–86CrossRefPubMedGoogle Scholar
  21. 21.
    Werber KD, Brauer RB, Weiss W, Becker K (2000) Osseous integration of bovine hydroxyapatite ceramic in metaphyseal bone defects of the distal radius. J Hand Surg [Am ] 25:833–841CrossRefGoogle Scholar
  22. 22.
    Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 249:53–62Google Scholar
  23. 23.
    Cassidy C, Jupiter JB, Cohen M, Delli-Santi M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constanz B (2003) Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 85-A:2127–2137PubMedGoogle Scholar
  24. 24.
    Sivakumar B, Harry LE, Paleolog EM (2004) Modulating angiogenesis: more vs less. JAMA 292:972–977CrossRefPubMedGoogle Scholar
  25. 25.
    Wick G, Schwarz S, Förster O, Peterlik M (1989) Funktionelle Pathologie. Fischer, StuttgartGoogle Scholar
  26. 26.
    Verlaan JJ, Oner FC, Dhert WJ (2006) Anterior spinal column augmentation with injectable bone cements. Biomaterials 27:290–301CrossRefPubMedGoogle Scholar
  27. 27.
    Sanchez-Sotelo J, Munuera L, Madero R (2000) Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Jt Surg Br 82:856–863CrossRefGoogle Scholar
  28. 28.
    Kopylov P, Runnqvist K, Jonsson K, Aspenberg P (1999) Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand 70:1–5CrossRefPubMedGoogle Scholar
  29. 29.
    Papavero L, Zwonitzer R, Burkard I, Klose K, Herrmann HD (2002) A composite bone graft substitute for anterior cervical fusion: assessment of osseointegration by quantitative computed tomography. Spine 27:1037–1043CrossRefPubMedGoogle Scholar
  30. 30.
    Charalambides C, Beer M, Cobb AG (2005) Poor results after augmenting autograft with xenograft (surgibone) in hip revision surgery: a report of 27 cases. Acta Orthop 76:544–549CrossRefPubMedGoogle Scholar
  31. 31.
    Vuola J, Bohling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S (2000) Natural coral as bone-defect-filling material. J Biomed Mater Res 51:117–122CrossRefPubMedGoogle Scholar
  32. 32.
    Capen DA, Calderone RR, Green A (1996) Perioperative risk factors for wound infections after lower back fusions. Orthop Clin North Am 27:83–86PubMedGoogle Scholar
  33. 33.
    Truscott W (2004) Impact of microscopic foreign debris on post-surgical complications. Surg Technol Int 12:34–46PubMedGoogle Scholar
  34. 34.
    Schierholz JM, Morsczeck C, Brenner N, Konig DP, Yucel N, Korenkov M, Neugebauer E, Rump AF, Waalenkamp G, Beuth J, Pulverer G, Arens S (2004) Special aspects of implant-associated infection in orthopedic surgery. From the pathophysiology to custom-tailored prevention strategies. Orthopade 33:397–404CrossRefPubMedGoogle Scholar
  35. 35.
    Rawlinson JN (1994) Morbidity after anterior cervical decompression and fusion. The influence of the donor site on recovery, and the results of a trial of surgibone compared to autologous bone. Acta Neurochir (Wien) 131:106–118CrossRefGoogle Scholar
  36. 36.
    Xie Y, Chopin D, Hardouin P, Lu J (2006) Clinical, radiological and histological study of the failure of cervical interbody fusions with bone substitutes. Eur Spine J 15:1196–1203CrossRefPubMedGoogle Scholar
  37. 37.
    Gierse H, Donath K (1999) Reactions and complications after the implantation of Endobon including morphological examination of explants. Arch Orthop Trauma Surg 119:349–355CrossRefPubMedGoogle Scholar
  38. 38.
    Williams PR, Thomas DP, Downes EM (2000) Osteitis pubis and instability of the pubic symphysis. When nonoperative measures fail. Am J Sports Med 28:350–355PubMedGoogle Scholar
  39. 39.
    Ruhe PQ, Hedberg EL, Padron NT, Spauwen PH, Jansen JA, Mikos AG (2005) Biocompatibility and degradation of poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A 74:533–544PubMedGoogle Scholar
  40. 40.
    Laschke MW, Witt K, Pohlemann T, Menger MD (2007) Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater 82:494–505PubMedGoogle Scholar
  41. 41.
    Abshagen K, Schrodi I, Gerber T, Vollmar B (2009) In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. J Biomed Mater Res A 91:557–566PubMedGoogle Scholar
  42. 42.
    David L, Argenta L, Fisher D (2005) Hydroxyapatite cement in pediatric craniofacial reconstruction. J Craniofac Surg 16:129–133CrossRefPubMedGoogle Scholar
  43. 43.
    Matic D, Phillips JH (2002) A contraindication for the use of hydroxyapatite cement in the pediatric population. Plast Reconstr Surg 110:1–5CrossRefPubMedGoogle Scholar
  44. 44.
    Sandison J (1928) The transparent chamber of the rabbits ear. Am J Anat 41:447–472CrossRefGoogle Scholar
  45. 45.
    Endrich B, Asaishi K, Gotz A, Messmer K (1980) Technical report—a new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med (Berl) 177:125–134CrossRefGoogle Scholar
  46. 46.
    Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143:1055–1062PubMedGoogle Scholar
  47. 47.
    Menger MD, Laschke MW, Vollmar B (2002) Viewing the microcirculation through the window: some twenty years experience with the hamster dorsal skinfold chamber. Eur Surg Res 34:83–91CrossRefPubMedGoogle Scholar
  48. 48.
    Ushiyama A, Yamada S, Ohkubo C (2004) Microcirculatory parameters measured in subcutaneous tissue of the mouse using a novel dorsal skinfold chamber. Microvasc Res 68:147–152CrossRefPubMedGoogle Scholar
  49. 49.
    Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, Daculsi G (1999) Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 46:103–111CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Bernd Roetman
    • 1
    • 4
  • Andrej Ring
    • 2
  • Stefan Langer
    • 2
  • Thomas A. Schildhauer
    • 3
  • Gert Muhr
    • 1
  • Manfred Köller
    • 1
  1. 1.Chirurgische Klinik und PoliklinikBerufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbHBochumGermany
  2. 2.Klinik für Plastische-, Hand- und SchwerstverbranntenchirurgieBerufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbHBochumGermany
  3. 3.Universitätsklinik für Unfallchirurgie und SporttraumatologieMedizinische Universitätsklinik, GrazGrazAustria
  4. 4.Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbHChirurgische Klinik und PoliklinikBochumGermany

Personalised recommendations