Langenbeck's Archives of Surgery

, Volume 394, Issue 6, pp 985–997

The possible use of stem cells in regenerative medicine: dream or reality?

  • Sabrina Ehnert
  • Matthias Glanemann
  • Andreas Schmitt
  • Stephan Vogt
  • Naama Shanny
  • Natascha C. Nussler
  • Ulrich Stöckle
  • Andreas Nussler
Overview

Abstract

Stem cells are one of the most fascinating areas in regenerative medicine today. They play a crucial role in the development and regeneration of human life and are defined as cells that continuously reproduce themselves while maintaining the ability to differentiate into various cell types. Stem cells are found at all developmental stages, from embryonic stem cells that differentiate into all cell types found in the human body to adult stem cells that are responsible for tissue regeneration. The general opinion postulates that clinical therapies based on the properties of stem cells may have the potential to change the treatment of degenerative diseases or important traumatic injuries in the “near” future. We here briefly review the literature in particularly for the liver, heart, kidney, cartilage, and bone regeneration.

Keywords

Embryonic stem cells Adult stem cells Liver Bone Heart Kidney 

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49PubMedCrossRefGoogle Scholar
  3. 3.
    Chen N, Hudson JE, Walczak P et al (2005) Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 23:1560–1570PubMedCrossRefGoogle Scholar
  4. 4.
    Ruhnke M, Nussler AK, Ungefroren H et al (2005) Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 79:1097–1103PubMedCrossRefGoogle Scholar
  5. 5.
    Ruhnke M, Ungefroren H, Nussler A et al (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  7. 7.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  8. 8.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  9. 9.
    Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  10. 10.
    Lowry WE, Richter L, Yachechko R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105:2883–2888PubMedCrossRefGoogle Scholar
  11. 11.
    Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146PubMedCrossRefGoogle Scholar
  12. 12.
    Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRefGoogle Scholar
  13. 13.
    Carey BW, Markoulaki S, Hanna J et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106:157–162PubMedCrossRefGoogle Scholar
  14. 14.
    Li W, Wei W, Zhu S et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRefGoogle Scholar
  15. 15.
    Levesque JP, Hendy J, Winkler IG et al (2003) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31:109–117PubMedCrossRefGoogle Scholar
  16. 16.
    Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  17. 17.
    Francois S, Mouiseddine M, Mathieu N et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86:1–8PubMedCrossRefGoogle Scholar
  18. 18.
    Gabelein G, Nussler AK, Morgott F et al (2008) Intrasplenic or subperitoneal hepatocyte transplantation to increase survival after surgically induced hepatic failure? Eur Surg Res 41:253–259PubMedCrossRefGoogle Scholar
  19. 19.
    Harada K, Higaki S, Hashimoto K et al (2007) Study on the colonoscopic features of GVHD enteritis that developed after hematopoietic stem cell transplantation. Hepatogastroenterology 54:2221–2227PubMedGoogle Scholar
  20. 20.
    Hauger O, Frost EE, van Heeswijk R et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210PubMedCrossRefGoogle Scholar
  21. 21.
    Inagaki Y, Higashiyama R, Okazaki I (2007) Treatment strategy for liver fibrosis through recruitment and differentiation of bone marrow stem/progenitor cells. Hepatol Res 37:991–993PubMedCrossRefGoogle Scholar
  22. 22.
    Kawada H, Fujita J, Kinjo K et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587PubMedCrossRefGoogle Scholar
  23. 23.
    Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748PubMedCrossRefGoogle Scholar
  24. 24.
    Terai S, Yamamoto N, Omori K et al (2002) A new cell therapy using bone marrow cells to repair damaged liver. J Gastroenterol 37(Suppl 14):162–163PubMedGoogle Scholar
  25. 25.
    Van Laake LW, Van Hoof D, Mummery CL (2005) Cardiomyocytes derived from stem cells. Ann Med 37:499–512PubMedCrossRefGoogle Scholar
  26. 26.
    Glanemann M, Gaebelein G, Nussler N et al (2009) Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 249:149–154PubMedCrossRefGoogle Scholar
  27. 27.
    Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRefGoogle Scholar
  28. 28.
    Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398PubMedCrossRefGoogle Scholar
  29. 29.
    Hidaka M, Su GN, Chen JK et al (2007) Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell Dev Biol Anim 43:49–58PubMedCrossRefGoogle Scholar
  30. 30.
    Marra KG, Defail AJ, Clavijo-Alvarez JA et al (2008) FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 121:1153–1164PubMedCrossRefGoogle Scholar
  31. 31.
    He L, Nan X, Wang Y et al (2007) Full-thickness tissue engineered skin constructed with autogenic bone marrow mesenchymal stem cells. Sci China C Life Sci 50:429–437PubMedCrossRefGoogle Scholar
  32. 32.
    Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198PubMedCrossRefGoogle Scholar
  33. 33.
    Bosetti M, Santin M, Lloyd AW et al (2007) Cell behaviour on phospholipids-coated surfaces. J Mater Sci Mater Med 18:611–617PubMedCrossRefGoogle Scholar
  34. 34.
    Liu X, Won Y, Ma PX (2005) Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 74:84–91PubMedGoogle Scholar
  35. 35.
    Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429PubMedCrossRefGoogle Scholar
  36. 36.
    Ueblacker P, Wagner B, Vogt S et al (2007) In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials 28:4480–4487PubMedCrossRefGoogle Scholar
  37. 37.
    Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidmaier G, Wildemann B, Bail H et al (2001) Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D, L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 28:341–350PubMedCrossRefGoogle Scholar
  39. 39.
    Ameen C, Strehl R, Bjorquist P et al (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRefGoogle Scholar
  41. 41.
    Molne J, Bjorquist P, Andersson K et al (2008) Blood group ABO antigen expression in human embryonic stem cells and in differentiated hepatocyte- and cardiomyocyte-like cells. Transplantation 86:1407–1413PubMedCrossRefGoogle Scholar
  42. 42.
    Soderdahl T, Kuppers-Munther B, Heins N et al (2007) Glutathione transferases in hepatocyte-like cells derived from human embryonic stem cells. Toxicol In Vitro 21:929–937PubMedCrossRefGoogle Scholar
  43. 43.
    Sartipy P, Bjorquist P, Strehl R et al (2007) The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 12:688–699PubMedCrossRefGoogle Scholar
  44. 44.
    Ehnert S, Nussler AK, Lehmann A et al (2008) Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 36:1922–1929PubMedCrossRefGoogle Scholar
  45. 45.
    Vigneau C, Zheng F, Polgar K et al (2006) Stem cells and kidney injury. Curr Opin Nephrol Hypertens 15:238–244PubMedCrossRefGoogle Scholar
  46. 46.
    Duan Y, Catana A, Meng Y et al (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25:3058–3068PubMedCrossRefGoogle Scholar
  47. 47.
    Isaikina Y, Kustanovich A, Svirnovski A (2006) Growth kinetics and self-renewal of human mesenchymal stem cells derived from bone marrow of children with oncohematological diseases during expansion in vitro. Exp Oncol 28:146–151PubMedGoogle Scholar
  48. 48.
    Stagg J (2008) Mesenchymal stem cells in cancer. Stem Cell Rev 4:119–124PubMedCrossRefGoogle Scholar
  49. 49.
    Strom S, Fisher R (2003) Hepatocyte transplantation: new possibilities for therapy. Gastroenterology 124:568–571PubMedCrossRefGoogle Scholar
  50. 50.
    Ott M, Schmidt HH, Cichon G et al (2000) Emerging therapies in hepatology: liver-directed gene transfer and hepatocyte transplantation. Cells Tissues Organs 167:81–87PubMedCrossRefGoogle Scholar
  51. 51.
    Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738PubMedCrossRefGoogle Scholar
  52. 52.
    Kobayashi N, Miyazaki M, Fukaya K et al (2000) Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes. Cell Transplant 9:733–735PubMedGoogle Scholar
  53. 53.
    Nagata H, Ito M, Shirota C et al (2003) Route of hepatocyte delivery affects hepatocyte engraftment in the spleen. Transplantation 76:732–734PubMedCrossRefGoogle Scholar
  54. 54.
    Mito M, Kusano M, Kawaura Y (1992) Hepatocyte transplantation in man. Transplant Proc 24:3052–3053PubMedGoogle Scholar
  55. 55.
    Strom SC, Chowdhury JR, Fox IJ (1999) Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis 19:39–48PubMedCrossRefGoogle Scholar
  56. 56.
    Aoki T, Koizumi T, Kobayashi Y et al (2005) A novel method of cryopreservation of rat and human hepatocytes by using encapsulation technique and possible use for cell transplantation. Cell Transplant 14:609–620PubMedCrossRefGoogle Scholar
  57. 57.
    Ringel M, von Mach MA, Santos R et al (2005) Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology 206:153–167PubMedCrossRefGoogle Scholar
  58. 58.
    Chan C, Berthiaume F, Nath BD et al (2004) Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl 10:1331–1342PubMedCrossRefGoogle Scholar
  59. 59.
    Aurich H, Sgodda M, Kaltwasser P et al (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58:570–581PubMedCrossRefGoogle Scholar
  60. 60.
    Aurich I, Mueller LP, Aurich H et al (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56:405–415PubMedCrossRefGoogle Scholar
  61. 61.
    Banas A, Teratani T, Yamamoto Y et al (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46:219–228PubMedCrossRefGoogle Scholar
  62. 62.
    Ishii K, Yoshida Y, Akechi Y et al (2008) Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 48:597–606PubMedCrossRefGoogle Scholar
  63. 63.
    Jones EA, Tosh D, Wilson DI et al (2002) Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 272:15–22PubMedCrossRefGoogle Scholar
  64. 64.
    Lysy PA, Smets F, Sibille C et al (2007) Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 46:1574–1585PubMedCrossRefGoogle Scholar
  65. 65.
    Momose Y, Matsunaga T, Murai K et al (2009) Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices. Biol Pharm Bull 32:619–626PubMedCrossRefGoogle Scholar
  66. 66.
    Najimi M, Khuu DN, Lysy PA et al (2007) Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant 16:717–728PubMedGoogle Scholar
  67. 67.
    Ruhnke M, Ungefroren H, Zehle G et al (2003) Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21:428–436PubMedCrossRefGoogle Scholar
  68. 68.
    Shen CN, Slack JM, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2:879–887PubMedCrossRefGoogle Scholar
  69. 69.
    Kobayashi N, Westerman KA, Tanaka N et al (2001) A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 6:293–300PubMedCrossRefGoogle Scholar
  70. 70.
    Tosh D, Shen CN, Slack JM (2002) Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology 36:534–543PubMedCrossRefGoogle Scholar
  71. 71.
    Hengstler JG, Brulport M, Schormann W et al (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1:61–74PubMedCrossRefGoogle Scholar
  72. 72.
    Nussler A, Konig S, Ott M et al (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45:144–159PubMedCrossRefGoogle Scholar
  73. 73.
    Anversa P, Rota M, Urbanek K et al (2005) Myocardial aging–a stem cell problem. Basic Res Cardiol 100:482–493PubMedCrossRefGoogle Scholar
  74. 74.
    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416PubMedCrossRefGoogle Scholar
  75. 75.
    Kamihata H, Matsubara H, Nishiue T et al (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052PubMedCrossRefGoogle Scholar
  76. 76.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  77. 77.
    Erdo F, Buhrle C, Blunk J et al (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785PubMedCrossRefGoogle Scholar
  78. 78.
    Min JY, Yang Y, Converso KL et al (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296PubMedCrossRefGoogle Scholar
  79. 79.
    Angelini P, Markwald RR (2005) Stem cell treatment of the heart: a review of its current status on the brink of clinical experimentation. Tex Heart Inst J 32:479–488PubMedGoogle Scholar
  80. 80.
    Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942PubMedCrossRefGoogle Scholar
  81. 81.
    Yousef M, Schannwell CM, Kostering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269PubMedCrossRefGoogle Scholar
  82. 82.
    Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083PubMedCrossRefGoogle Scholar
  83. 83.
    Hagege AA, Carrion C, Menasche P et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361:491–492PubMedCrossRefGoogle Scholar
  84. 84.
    Menasche P (2005) Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives. Thromb Haemost 94:697–701PubMedGoogle Scholar
  85. 85.
    Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200PubMedCrossRefGoogle Scholar
  86. 86.
    Tse HF, Kwong YL, Chan JK et al (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49PubMedCrossRefGoogle Scholar
  87. 87.
    Ye L, Haider H, Sim EK (2006) Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 231:8–19Google Scholar
  88. 88.
    Cleland JG, Coletta AP, Abdellah AT et al (2007) Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur J Heart Fail 9:92–97PubMedCrossRefGoogle Scholar
  89. 89.
    Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRefGoogle Scholar
  90. 90.
    Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedCrossRefGoogle Scholar
  91. 91.
    Laham RJ, Oettgen P (2003) Bone marrow transplantation for the heart: fact or fiction? Lancet 361:11–12PubMedCrossRefGoogle Scholar
  92. 92.
    Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313PubMedCrossRefGoogle Scholar
  93. 93.
    Lin F (2006) Stem cells in kidney regeneration following acute renal injury. Pediatr Res 59:74R–78RPubMedCrossRefGoogle Scholar
  94. 94.
    Ricardo SD, Deane JA (2005) Adult stem cells in renal injury and repair. Nephrology (Carlton) 10:276–282CrossRefGoogle Scholar
  95. 95.
    Oliver JA, Maarouf O, Cheema FH et al (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMedGoogle Scholar
  96. 96.
    Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804PubMedCrossRefGoogle Scholar
  97. 97.
    Kale S, Karihaloo A, Clark PR et al (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49PubMedGoogle Scholar
  98. 98.
    Anglani F, Forino M, Del Prete D et al (2004) In search of adult renal stem cells. J Cell Mol Med 8:474–487PubMedCrossRefGoogle Scholar
  99. 99.
    Bates CM, Lin F (2005) Future strategies in the treatment of acute renal failure: growth factors, stem cells, and other novel therapies. Curr Opin Pediatr 17:215–220PubMedCrossRefGoogle Scholar
  100. 100.
    Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting–technique and long-term results. Injury 39(Suppl 1):S32–S39PubMedCrossRefGoogle Scholar
  101. 101.
    Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(Suppl 1):S26–S31PubMedCrossRefGoogle Scholar
  102. 102.
    Salama R, Weissman SL (1978) The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J Bone Joint Surg Br 60:111–115PubMedGoogle Scholar
  103. 103.
    Goel A, Sangwan SS, Siwach RC et al (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36:203–206PubMedCrossRefGoogle Scholar
  104. 104.
    Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955PubMedCrossRefGoogle Scholar
  105. 105.
    Raty JK, Lesch HP, Wirth T et al (2008) Improving safety of gene therapy. Curr Drug Saf 3:46–53PubMedCrossRefGoogle Scholar
  106. 106.
    Yi Y, Hahm SH, Lee KH (2005) Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 5:25–35PubMedGoogle Scholar
  107. 107.
    Strom SC, Fisher RA, Thompson MT et al (1997) Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63:559–569PubMedCrossRefGoogle Scholar
  108. 108.
    Fox IJ, Chowdhury JR, Kaufman SS et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426PubMedCrossRefGoogle Scholar
  109. 109.
    Bohnen NI, Charron M, Reyes J et al (2000) Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion. Clin Nucl Med 25:447–450PubMedCrossRefGoogle Scholar
  110. 110.
    Horslen SP, McCowan TC, Goertzen TC et al (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111:1262–1267PubMedCrossRefGoogle Scholar
  111. 111.
    Muraca M, Gerunda G, Neri D et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318PubMedCrossRefGoogle Scholar
  112. 112.
    Dhawan A, Mitry RR, Hughes RD et al (2004) Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–1814PubMedCrossRefGoogle Scholar
  113. 113.
    Meyburg J, Hoerster F, Weitz J et al (2008) Use of the middle colic vein for liver cell transplantation in infants and small children. Transplant Proc 40:936–937PubMedCrossRefGoogle Scholar
  114. 114.
    Allen KJ, Mifsud NA, Williamson R et al (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 14:688–694PubMedCrossRefGoogle Scholar
  115. 115.
    Ambrosino G, Varotto S, Strom SC et al (2005) Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 14:151–157PubMedCrossRefGoogle Scholar
  116. 116.
    Meyburg J, Das AM, Hoerster F et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641PubMedCrossRefGoogle Scholar
  117. 117.
    Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand 64:671–672PubMedCrossRefGoogle Scholar
  118. 118.
    Gan Y, Dai K, Zhang P et al (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sabrina Ehnert
    • 1
  • Matthias Glanemann
    • 2
  • Andreas Schmitt
    • 1
  • Stephan Vogt
    • 3
  • Naama Shanny
    • 2
  • Natascha C. Nussler
    • 4
  • Ulrich Stöckle
    • 1
  • Andreas Nussler
    • 1
  1. 1.Department of TraumatologyTU Munich, Klinikum rechts der IsarMunichGermany
  2. 2.Department of General, Visceral and Transplantation SurgeryCharité, Campus VirchowBerlinGermany
  3. 3.Department of Sport OrthopedicsTU Munich, Klinikum rechts der IsarMunichGermany
  4. 4.Department of General SurgeryKlinikum NeuperlachMunichGermany

Personalised recommendations