Langenbeck's Archives of Surgery

, Volume 394, Issue 1, pp 17–30 | Cite as

Food fight! Parenteral nutrition, enteral stimulation and gut-derived mucosal immunity

  • Joshua L. Hermsen
  • Yoshifumi Sano
  • Kenneth A. Kudsk
Current Concepts in Clinical Surgery



Nutrition support is an integral component of modern patient care. Type and route of nutritional support impacts clinical infectious outcomes in critically injured patients.


This article reviews the relationships between type and route of nutrition and gut-derived mucosal immunity in both the clinical and laboratory settings.


Parenteral nutrition Mucosal immunity Immunoglobulin A Polymeric immunoglobulin receptor Pneumonia 



This study was supported by NIH grant R01 GM53439. This material is based upon work supported in part by the Office of Research and Development, Biomedical Laboratory R&D Service, Department of Veterans Affairs.


  1. 1.
    Fletcher AG Jr, Gimbel NS, Riegel C (1950) Parenteral nutrition with human serum albumin as the source of protein in the early post-operative period. Surg Gynecol Obstet 90:151–154PubMedGoogle Scholar
  2. 2.
    Turner FP (1955) Hyperalimentation in the management of pyloric obstruction with comments on certain theoretical relationships between protein deficiency and peptic ulcer. Gastroenterology 29:1061–1068PubMedGoogle Scholar
  3. 3.
    Wretlind A (1955) The possibilities of providing adequate parenteral nutrition. Nord Med 53:1013–1019PubMedGoogle Scholar
  4. 4.
    McKibbin JM, Ferry RM, Stare FJ (1946) Parenteral nutrition. Ii. The utilization of emulsified fat given intravenously. J Clin Invest 25:679–686PubMedGoogle Scholar
  5. 5.
    Watkin DM (1965) Fecal excretion of lipids before, during and after hyperalimentation with fat administered intravenously. Am J Clin Nutr 16:213–223PubMedGoogle Scholar
  6. 6.
    Watkin DM, Steinfeld JL (1965) Nutrient and energy metabolism in patients with and without cancer during hyperalimentation with fat administered intravenously. Am J Clin Nutr 16:182–212PubMedGoogle Scholar
  7. 7.
    Dudrick SJ (1970) Intravenous hyperalimentation. Surgery 68:726–727PubMedGoogle Scholar
  8. 8.
    Dudrick SJ, Allen TR (1971) Long-term intravenous hyperalimentation. Del Med J 43:149–154PubMedGoogle Scholar
  9. 9.
    Dudrick SJ, Wilmore DW, Vars HM et al (1968) Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 64:134–142PubMedGoogle Scholar
  10. 10.
    Kudsk KA, Croce MA, Fabian TC et al (1992) Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215:503–511, (discussion 511–3)PubMedGoogle Scholar
  11. 11.
    Moore EE, Jones TN (1986) Benefits of immediate jejunostomy feeding after major abdominal trauma—a prospective, randomized study. J Trauma 26:874–881PubMedGoogle Scholar
  12. 12.
    Moore FA, Moore EE, Jones TN et al (1989) TEN versus TPN following major abdominal trauma–reduced septic morbidity. J Trauma 29:916–22, (discussion 922–3)PubMedGoogle Scholar
  13. 13.
    Moore FA, Feliciano DV, Andrassy RJ et al (1992) Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg 216:172–183PubMedGoogle Scholar
  14. 14.
    McGhee JR, Mestecky J, Dertzbaugh MT et al (1992) The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10:75–88PubMedGoogle Scholar
  15. 15.
    Kudsk KA (2002) Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 183:390–398PubMedGoogle Scholar
  16. 16.
    Kang W, Kudsk KA (2007) Is there evidence that the gut contributes to mucosal immunity in humans? JPEN J Parenter Enteral Nutr 31:246–258PubMedGoogle Scholar
  17. 17.
    Tomasi TB Jr, Tan EM, Solomon A et al (1965) Characteristics of an immune system common to certain external secretions. J Exp Med 121:101–124PubMedGoogle Scholar
  18. 18.
    Mestecky J, McGhee JR, Arnold RR et al (1978) Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest 61:731–737PubMedGoogle Scholar
  19. 19.
    Czerkinsky C, Prince SJ, Michalek SM et al (1987) IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci U S A 84:2449–2453PubMedGoogle Scholar
  20. 20.
    Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends Immunol 25:570–577PubMedGoogle Scholar
  21. 21.
    Craig SW, Cebra JJ (1971) Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134:188–200PubMedGoogle Scholar
  22. 22.
    Husband AJ, Gowans JL (1978) The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148:1146–1160PubMedGoogle Scholar
  23. 23.
    Brandtzaeg P, Johansen FE (2005) Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 206:32–63PubMedGoogle Scholar
  24. 24.
    Jang MH, Kweon MN, Iwatani K et al (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 101:6110–6115PubMedGoogle Scholar
  25. 25.
    Pachynski RK, Wu SW, Gunn MD et al (1998) Secondary lymphoid-tissue chemokine (SLC) stimulates integrin alpha 4 beta 7-mediated adhesion of lymphocytes to mucosal addressin cell adhesion molecule-1 (MAdCAM-1) under flow. J Immunol 161:952–956PubMedGoogle Scholar
  26. 26.
    Brandtzaeg P, Berstad AE, Farstad IN (1997) Mucosal immunity—a major adaptive defence mechanism. Behring Inst Mitt (98):1–23Google Scholar
  27. 27.
    Lebman DA, Coffman RL (1994) Cytokines in the mucosal immune system. In: Ogra PL, Lamm ME, McGhee JR (eds) Handbook of mucosal immunology. Academic, San Diego, pp 243–249Google Scholar
  28. 28.
    Brandtzaeg P (1974) Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420PubMedGoogle Scholar
  29. 29.
    Brandtzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:71–73PubMedGoogle Scholar
  30. 30.
    Kaetzel CS, Mostov K (2005) Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Mestecky J, Bienenstock J, Lamm M et al (eds) Mucosal immunology. Academic, San Diego, pp 211–250Google Scholar
  31. 31.
    Niederman MS, Merrill WW, Polomski LM et al (1986) Influence of sputum IgA and elastase on tracheal cell bacterial adherence. Am Rev Respir Dis 133:255–260PubMedGoogle Scholar
  32. 32.
    Kress HG, Scheidewig C, Schmidt H et al (1999) Reduced incidence of postoperative infection after intravenous administration of an immunoglobulin A- and immunoglobulin M-enriched preparation in anergic patients undergoing cardiac surgery. Crit Care Med 27:1281–1287PubMedGoogle Scholar
  33. 33.
    Lycke N, Eriksen L, Holmgren J (1987) Protection against cholera toxin after oral immunization is thymus-dependent and associated with intestinal production of neutralizing IgA antitoxin. Scand J Immunol 25:413–419PubMedGoogle Scholar
  34. 34.
    Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72PubMedGoogle Scholar
  35. 35.
    Macpherson AJ, Gatto D, Sainsbury E et al (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226PubMedGoogle Scholar
  36. 36.
    Kroese FG, Butcher EC, Stall AM et al (1989) Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1:75–84PubMedGoogle Scholar
  37. 37.
    Fujimura Y, Haruma K, Owen RL (2007) Bombesin prevents the atrophy of Peyer’s patches and the dysfunction of M cells in rabbits receiving long-term parenteral nutrition. JPEN J Parenter Enteral Nutr 31:75–85PubMedGoogle Scholar
  38. 38.
    Li J, Kudsk KA, Gocinski B et al (1995) Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J Trauma 39:44–51, (discussion 51–52)PubMedGoogle Scholar
  39. 39.
    King BK, Li J, Kudsk KA (1997) A temporal study of TPN-induced changes in gut-associated lymphoid tissue and mucosal immunity. Arch Surg 132:1303–1309PubMedGoogle Scholar
  40. 40.
    Brandtzaeg P, Farstad IN, Johansen FE et al (1999) The B-cell system of human mucosae and exocrine glands. Immunol Rev 171:45–87PubMedGoogle Scholar
  41. 41.
    Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99–108PubMedGoogle Scholar
  42. 42.
    Berlin C, Berg EL, Briskin MJ et al (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195PubMedGoogle Scholar
  43. 43.
    Zarzaur BL, Fukatsu K, Johnson CJ et al (2001) A temporal study in diet induced changes in Peyer patch MAdCAM-1 expression. Surg Forum 52:194–196Google Scholar
  44. 44.
    Gomez FE, Lan J, Kang W et al (2007) Parenteral nutrition and fasting reduces mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) mRNA in Peyer’s patches of mice. JPEN J Parenter Enteral Nutr 31:47–52PubMedGoogle Scholar
  45. 45.
    Ikeda S, Kudsk KA, Fukatsu K et al (2003) Enteral feeding preserves mucosal immunity despite in vivo MAdCAM-1 blockade of lymphocyte homing. Ann Surg 237:677–85, (discussion 685)PubMedGoogle Scholar
  46. 46.
    Kang W, Gomez FE, Lan J et al (2006) Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin Beta receptor expression. Ann Surg 244:392–399PubMedGoogle Scholar
  47. 47.
    Browning JL, Allaire N, Ngam-Ek A et al (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550PubMedGoogle Scholar
  48. 48.
    Dohi T, Rennert PD, Fujihashi K et al (2001) Elimination of colonic patches with lymphotoxin beta receptor-Ig prevents Th2 cell-type colitis. J Immunol 167:2781–2790PubMedGoogle Scholar
  49. 49.
    Dejardin E, Droin NM, Delhase M et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17:525–535PubMedGoogle Scholar
  50. 50.
    Kang W, Kudsk KA, Sano Y et al (2007) Effects of lymphotoxin beta receptor blockade on intestinal mucosal immunity. JPEN J Parenter Enteral Nutr 31:358–364, (discussion 364–365)PubMedGoogle Scholar
  51. 51.
    Janu P, Li J, Renegar KB et al (1997) Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann Surg 225:707–715, (discussion 715–717)PubMedGoogle Scholar
  52. 52.
    Parrott DM (1976) The gut as a lymphoid organ. Clin Gastroenterol 5:211–228PubMedGoogle Scholar
  53. 53.
    Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185–190PubMedGoogle Scholar
  54. 54.
    Alverdy JC, Aoys E, Moss GS (1990) Effect of commercially available chemically defined liquid diets on the intestinal microflora and bacterial translocation from the gut. JPEN J Parenter Enteral Nutr 14:1–6PubMedGoogle Scholar
  55. 55.
    Spaeth G, Gottwald T, Specian RD et al (1994) Secretory immunoglobulin A, intestinal mucin, and mucosal permeability in nutritionally induced bacterial translocation in rats. Ann Surg 220:798–808PubMedGoogle Scholar
  56. 56.
    Deitch EA, Ma WJ, Ma L et al (1990) Protein malnutrition predisposes to inflammatory-induced gut-origin septic states. Ann Surg 211:560–567, (discussion 567–568)PubMedCrossRefGoogle Scholar
  57. 57.
    Nayci A, Atis S, Ersoz G et al (2004) Gut decontamination prevents bronchoscopy-induced bacterial translocation. An experimental study in rats. Respiration 71:66–71PubMedGoogle Scholar
  58. 58.
    Wu GH, Wang H, Zhang YW et al (2004) Glutamine supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. World J Gastroenterol 10:2592–2594PubMedGoogle Scholar
  59. 59.
    MacFie J, O’Boyle C, Mitchell CJ et al (1999) Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45:223–228PubMedGoogle Scholar
  60. 60.
    O’Boyle CJ, MacFie J, Mitchell CJ et al (1998) Microbiology of bacterial translocation in humans. Gut 42:29–35PubMedGoogle Scholar
  61. 61.
    Sedman PC, MacFie J, Palmer MD et al (1995) Preoperative total parenteral nutrition is not associated with mucosal atrophy or bacterial translocation in humans. Br J Surg 82:1663–1667PubMedGoogle Scholar
  62. 62.
    Macpherson AJ, McCoy KD, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunology 1:11–22PubMedGoogle Scholar
  63. 63.
    Fukatsu K, Lundberg AH, Hanna MK et al (1999) Route of nutrition influences intercellular adhesion molecule-1 expression and neutrophil accumulation in intestine. Arch Surg 134:1055–1060PubMedGoogle Scholar
  64. 64.
    Fukatsu K, Lundberg AH, Hanna MK et al (2000) Increased expression of intestinal P-selectin and pulmonary E-selectin during intravenous total parenteral nutrition. Arch Surg 135:1177–1182PubMedGoogle Scholar
  65. 65.
    Fukatsu K, Kudsk KA, Zarzaur BL et al (2002) Increased ICAM-1 and beta2 integrin expression in parenterally fed mice after a gut ischemic insult. Shock 18:119–124PubMedGoogle Scholar
  66. 66.
    Fukatsu K, Zarzaur BL, Johnson CD et al (2001) Enteral nutrition prevents remote organ injury and death after a gut ischemic insult. Ann Surg 233:660–668PubMedGoogle Scholar
  67. 67.
    Wildhaber BE, Yang H, Spencer AU et al (2005) Lack of enteral nutrition—effects on the intestinal immune system. J Surg Res 123:8–16PubMedGoogle Scholar
  68. 68.
    Lin MT, Saito H, Fukushima R et al (1997) Preoperative total parenteral nutrition influences postoperative systemic cytokine responses after colorectal surgery. Nutrition 13:8–12PubMedGoogle Scholar
  69. 69.
    Takagi K, Yamamori H, Toyoda Y et al (2000) Modulating effects of the feeding route on stress response and endotoxin translocation in severely stressed patients receiving thoracic esophagectomy. Nutrition 16:355–360PubMedGoogle Scholar
  70. 70.
    Fong YM, Marano MA, Barber A et al (1989) Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg 210:449–456, (discussion 456–457)PubMedGoogle Scholar
  71. 71.
    Brandtzaeg P, Kiyono H, Pabst R et al (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunology 1:31–37PubMedGoogle Scholar
  72. 72.
    Sonoda E, Hitoshi Y, Yamaguchi N et al (1992) Differential regulation of IgA production by TGF-beta and IL-5: TGF-beta induces surface IgA-positive cells bearing IL-5 receptor, whereas IL-5 promotes their survival and maturation into IgA-secreting cells. Cell Immunol 140:158–172PubMedGoogle Scholar
  73. 73.
    Wu Y, Kudsk KA, DeWitt RC et al (1999) Route and type of nutrition influence IgA-mediating intestinal cytokines. Ann Surg 229:662–667, (discussion 667–8)PubMedGoogle Scholar
  74. 74.
    Fukatsu K, Kudsk KA, Zarzaur BL et al (2001) TPN decreases IL-4 and IL-10 mRNA expression in lipopolysaccharide stimulated intestinal lamina propria cells but glutamine supplementation preserves the expression. Shock 15:318–322PubMedGoogle Scholar
  75. 75.
    Kaetzel CS, Bruno MEC (2007) Epithelial transport of IgA by the ploymeric immunoglobulin receptor. In: Kaetzel CS (ed) Mucosal immune defense: immunoglobulin A. Springer, New York, pp 43–89Google Scholar
  76. 76.
    Hirunsatit R, Kongruttanachok N, Shotelersuk K et al (2003) Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer. BMC Genet 4:3PubMedGoogle Scholar
  77. 77.
    Obara W, Iida A, Suzuki Y et al (2003) Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet 48:293–299PubMedGoogle Scholar
  78. 78.
    Johansen FE, Braathen R, Manthe E et al (2007) Regulation of the mucosal IgA system. In: Kaetzel CS (ed) Mucosal immune defense: immunoglobulin A. Springer, New York, pp 111–143Google Scholar
  79. 79.
    Lycke N, Erlandsson L, Ekman L et al (1999) Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 163:913–919PubMedGoogle Scholar
  80. 80.
    Hendrickson BA, Conner DA, Ladd DJ et al (1995) Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J Exp Med 182:1905–1911PubMedGoogle Scholar
  81. 81.
    Mazanec MB, Nedrud JG, Kaetzel CS et al (1993) A three-tiered view of the role of IgA in mucosal defense. Immunol Today 14:430–435PubMedGoogle Scholar
  82. 82.
    de Oliveira IR, de Araujo AN, Bao SN et al (2001) Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 203:29–33PubMedGoogle Scholar
  83. 83.
    Boren T, Falk P, Roth KA et al (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895PubMedGoogle Scholar
  84. 84.
    Dallas SD, Rolfe RD (1998) Binding of Clostridium difficile toxin A to human milk secretory component. J Med Microbiol 47:879–888PubMedCrossRefGoogle Scholar
  85. 85.
    Royle L, Roos A, Harvey DJ et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140–20153PubMedGoogle Scholar
  86. 86.
    Kaetzel CS (2001) Polymeric Ig receptor: defender of the fort or Trojan horse? Curr Biol 11:R35–R38PubMedGoogle Scholar
  87. 87.
    Sano Y, Gomez FE, Kang W et al (2007) Intestinal polymeric immunoglobulin receptor (pIgR) is affected by type and route of nutrition. JPEN 31:351–351Google Scholar
  88. 88.
    Chapin SJ, Enrich C, Aroeti B et al (1996) Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J Biol Chem 271:1336–1342PubMedGoogle Scholar
  89. 89.
    Okamoto CT, Song W, Bomsel M et al (1994) Rapid internalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J Biol Chem 269:15676–15682PubMedGoogle Scholar
  90. 90.
    Johnson CD, Kudsk KA, Fukatsu K et al (2003) Route of nutrition influences generation of antibody-forming cells and initial defense to an active viral infection in the upper respiratory tract. Ann Surg 237:565–573PubMedGoogle Scholar
  91. 91.
    Renegar KB, Johnson CD, Dewitt RC et al (2001) Impairment of mucosal immunity by total parenteral nutrition: requirement for IgA in murine nasotracheal anti-influenza immunity. J Immunol 166:819–825PubMedGoogle Scholar
  92. 92.
    King BK, Kudsk KA, Li J et al (1999) Route and type of nutrition influence mucosal immunity to bacterial pneumonia. Ann Surg 229:272–278PubMedGoogle Scholar
  93. 93.
    Kudsk KA, Hermsen JL, Genton L et al (2008) Injury stimulates an innate respiratory immunoglobulin a immune response in humans. J Trauma 64:316–323, (discussion 323–325)PubMedGoogle Scholar
  94. 94.
    Pine R (1997) Convergence of TNFalpha and IFNgamma signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/kappaB promoter element. Nucleic Acids Res 25:4346–4354PubMedGoogle Scholar
  95. 95.
    Schjerven H, Tran TN, Brandtzaeg P et al (2004) De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. J Immunol 173:1849–1857PubMedGoogle Scholar
  96. 96.
    Bruno ME, Kaetzel CS (2005) Long-term exposure of the HT-29 human intestinal epithelial cell line to TNF causes sustained up-regulation of the polymeric Ig receptor and proinflammatory genes through transcriptional and posttranscriptional mechanisms. J Immunol 174:7278–7284PubMedGoogle Scholar
  97. 97.
    Schmidt LD, Xie Y, Lyte M et al (2007) Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. J Neuroimmunol 185:20–28PubMedGoogle Scholar
  98. 98.
    Li J, Kudsk KA, Janu P et al (1997) Effect of glutamine-enriched total parenteral nutrition on small intestinal gut-associated lymphoid tissue and upper respiratory tract immunity. Surgery 121:542–549PubMedGoogle Scholar
  99. 99.
    DeWitt RC, Wu Y, Renegar KB et al (1999) Glutamine-enriched total parenteral nutrition preserves respiratory immunity and improves survival to a Pseudomonas Pneumonia. J Surg Res 84:13–18PubMedGoogle Scholar
  100. 100.
    Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22:875–876PubMedGoogle Scholar
  101. 101.
    McDonald TJ, Nilsson G, Vagne M et al (1978) A gastrin releasing peptide from the porcine nonantral gastric tissue. Gut 19:767–774PubMedGoogle Scholar
  102. 102.
    Delle Fave G, Kohn A, De Magistris L et al (1983) Effects of bombesin on gastrin and gastric acid secretion in patients with duodenal ulcer. Gut 24:231–235PubMedGoogle Scholar
  103. 103.
    Lieverse RJ, Jansen JB, van de Zwan A et al (1993) Bombesin reduces food intake in lean man by a cholecystokinin-independent mechanism. J Clin Endocrinol Metab 76:1495–1498PubMedGoogle Scholar
  104. 104.
    Lieverse RJ, Masclee AA, Jansen JB et al (1998) Obese women are less sensitive for the satiety effects of bombesin than lean women. Eur J Clin Nutr 52:207–212PubMedGoogle Scholar
  105. 105.
    Vulchanova L, Casey MA, Crabb GW et al (2007) Anatomical evidence for enteric neuroimmune interactions in Peyer’s patches. J Neuroimmunol 185:64–74PubMedGoogle Scholar
  106. 106.
    DeWitt RC, Wu Y, Renegar KB et al (2000) Bombesin recovers gut-associated lymphoid tissue and preserves immunity to bacterial pneumonia in mice receiving total parenteral nutrition. Ann Surg 231:1–8PubMedGoogle Scholar
  107. 107.
    Zarzaur BL, Wu Y, Fukatsu K et al (2002) The neuropeptide bombesin improves IgA-mediated mucosal immunity with preservation of gut interleukin-4 in total parenteral nutrition-fed mice. Surgery 131:59–65PubMedGoogle Scholar
  108. 108.
    Zarzaur BL, Ikeda S, Johnson CD et al (2002) Mucosal immunity preservation with bombesin or glutamine is not dependent on mucosal addressin cell adhesion molecule-1 expression. JPEN J Parenter Enteral Nutr 26:265–270, (discussion 270)PubMedGoogle Scholar
  109. 109.
    Annane D, Clair B, Mathieu B et al (1996) Immunoglobulin A levels in bronchial samples during mechanical ventilation and onset of nosocomial pneumonia in critically ill patients. Am J Respir Crit Care Med 153:1585–1590PubMedGoogle Scholar
  110. 110.
    Perkkio M, Savilahti E (1980) Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res 14:953–955PubMedGoogle Scholar
  111. 111.
    Knox WF (1986) Restricted feeding and human intestinal plasma cell development. Arch Dis Child 61:744–749PubMedGoogle Scholar
  112. 112.
    Machado CS, Rodrigues MA, Maffei HV (1994) Assessment of gut intraepithelial lymphocytes during late gestation and the neonatal period. Biol Neonate 66:324–329PubMedCrossRefGoogle Scholar
  113. 113.
    Okamoto K, Fukatsu K, Ueno C et al (2005) T lymphocyte numbers in human gut associated lymphoid tissue are reduced without enteral nutrition. JPEN J Parenter Enteral Nutr 29:56–58PubMedGoogle Scholar
  114. 114.
    Wijesinha SS, Steer HW (1982) Studies of the immunoglobulin-producing cells of the human intestine: the defunctioned bowel. Gut 23:211–214PubMedGoogle Scholar
  115. 115.
    Buchman AL, Mestecky J, Moukarzel A et al (1995) Intestinal immune function is unaffected by parenteral nutrition in man. J Am Coll Nutr 14:656–661PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joshua L. Hermsen
    • 1
  • Yoshifumi Sano
    • 1
  • Kenneth A. Kudsk
    • 1
    • 2
  1. 1.Department of SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Veterans Administration Surgical ServicesWilliam S. Middleton Memorial Veterans HospitalMadisonUSA

Personalised recommendations