Langenbeck's Archives of Surgery

, Volume 393, Issue 6, pp 891–900 | Cite as

Pancreatic stellate cells—role in pancreas cancer

  • Max G. Bachem
  • Shaoxia Zhou
  • Karin Buck
  • Wilhelm Schneiderhan
  • Marco Siech
Original Article

Abstract

Background

Adenocarcinomas of the pancreas are characterized by a rapid progression, an early metastasis, a limited response to chemo- and radiotherapy, and an intense fibrotic reaction known as tumor desmoplasia. Carcinoma cells are surrounded by a dense stroma consisting of myofibroblast-like cells, collagens, and fibronectin.

Materials and methods

This review describes the interaction of activated pancreatic stellate cells (myofibroblast-like cells) with tumor cells in pancreas adenocarcinomas. Our data were obtained in cell culture experiments and in in vivo investigations.

Results

Carcinoma cells produce soluble mediators and stimulate motility, proliferation, matrix-, and MMP synthesis of stellate cells. Vice versa-activated stellate cells release mitogens, stimulating proliferation of cancer cells. Cancer cell proliferation and resistance to apoptosis might further be induced by the microenvironment (extracellular matrix), which is primarily provided by stellate cells. A very important aspect in the interaction of stellate cells with cancer cells is the expression of EMMPRIN (extracellular matrix metalloproteinase inducer) by cancer cells, the shedding of the extracellular part of EMMPRIN by matrix metalloproteinases (MMPs), and the induction of MMPs in stellate cells by soluble EMMPRIN. In particular, the stellate cells in close proximity to tumor cells therefore express MMPs and degrade connective tissue.

Conclusion

Through complex interactions between stellate cells and carcinoma cells, tumor progression and cancer cell invasion are accelerated. As we gain better understanding of these mechanisms, adequate therapies to reduce tumor cell invasion and cancer progression might be developed.

Keywords

Pancreas carcinoma Pancreatic stellate cell Collagen EMMPRIN Cell motility 

Abbreviations

DMEM

Dulbecco’s modification of Eagle’s medium

ECM

extracellular matrix

FAK

focal adhesion kinase

FCS

fetal calf serum

FN

fibronectin

PDAC

pancreas ductal adenocarcinoma

PDGF

platelet-derived growth factor

PSC

pancreatic stellate cells

SMA

α-smooth muscle actin

SN

culture supernatant

References

  1. 1.
    Brand RE, Tempero MA (1998) Pancreatic cancer. Curr Opin Oncol 10:362–366 ReviewPubMedCrossRefGoogle Scholar
  2. 2.
    Warshaw AL, Fernandez-del Castillo C (1992) Pancreatic carcinoma. N Engl J Med 326:455–465PubMedCrossRefGoogle Scholar
  3. 3.
    Cruickshank AH (1986) Solid carcinomas of the exocrine pancreas. Pathology of the pancreas. Springer, London, UK, pp 155–177Google Scholar
  4. 4.
    Imamura T, Iguchi H, Manabe T, Ohshio G, Yoshimura T, Wang ZH, Suwa H, Ishigami S, Imamura M (1995) Quantitative analysis of collagen and collagen subtypes I, III, and V in human pancreatic cancer, tumor-associated chronic pancreatitis, and alcoholic chronic pancreatitis. Pancreas 11:357–364PubMedCrossRefGoogle Scholar
  5. 5.
    Mollenhauer J, Roether I, Kern HF (1987) Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas 2:14–24PubMedCrossRefGoogle Scholar
  6. 6.
    Löhr M, Trautmann B, Gottler M, Peters S, Zauner I, Maillet B, Klöppel G (1994) Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 69:144–151PubMedGoogle Scholar
  7. 7.
    Kuniyasu H, Abbruzzese JL, Cleary KR, Fidler IL (2001) Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma. Int J Oncol 19:681–685PubMedGoogle Scholar
  8. 8.
    Gress TM, Menke A, Bachem MG, Müller-Pillasch F, Ellenrieder V, Weidenbach H, Wagner M, Schmid RM, Adler G (1998) Extracellular matrix and pancreatic diseases. Digestion 59:625–637 (Review)PubMedCrossRefGoogle Scholar
  9. 9.
    Gress TM, Müller-Pillasch F, Lerch MM, Friess H, Buchler M, Adler G (1995) Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 62:407–413PubMedCrossRefGoogle Scholar
  10. 10.
    Yen TW, Aardal NP, Bronner MP, Thorning DR, Savard CE, Lee SP, Bell RH (2002) Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas. Surgery 131:129–134PubMedCrossRefGoogle Scholar
  11. 11.
    Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, Ramm GA, Buchler M, Friess H, McCarroll JA, Keogh G, Merrett N, Pirola R, Pirola R, Wilson JS (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29:179–187PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshida S, Yokota T, Ujiki M, Ding XZ, Pelham C, Adrian TE, Talamonti MS, Bell RH, Denham W (2004) Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway. Biochem Biophys Res Commun 323:1241–1245PubMedCrossRefGoogle Scholar
  13. 13.
    Bachem MG, Schünemann M, Ramadani M, Siech M, Berger H, Buck A, Zhou S, Schmid-Kostas A, Adler G (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921PubMedCrossRefGoogle Scholar
  14. 14.
    Friedman SL (2004) Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 40:1041–1043PubMedCrossRefGoogle Scholar
  15. 15.
    Eng FJ, Friedman SL (2000) Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol 279:G7–G11PubMedGoogle Scholar
  16. 16.
    Gressner AM, Bachem MG (1995) Molecular mechanisms of liver fibrogenesis—a homage to the role of activated fat-storing cells. Digestion 56:335–346. ReviewPubMedCrossRefGoogle Scholar
  17. 17.
    Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133PubMedCrossRefGoogle Scholar
  18. 18.
    Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Berger H, Grünert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432PubMedCrossRefGoogle Scholar
  19. 19.
    Saotome T, Inoue H, Fujimiya M (1997) Morphological and immunocytochemical identification of periacinar fibroblast-like cells derived from human pancreatic acini. Pancreas 14:373–382PubMedCrossRefGoogle Scholar
  20. 20.
    Buchholz M, Kestler HA, Holzmann K, Ellenrieder V, Schneiderhan W, Siech M, Adler G, Bachem MG, Gress TM (2005) Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J Mol Med 83:795–805PubMedCrossRefGoogle Scholar
  21. 21.
    Schneiderhan W, Diaz F, Fundel M, Zhou S, Siech M, Hasel C, Moller P, Gschwend JE, Seufferlein T, Gress T, Adler G, Bachem MG (2007) Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci 120:512–519PubMedCrossRefGoogle Scholar
  22. 22.
    Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55:434–439PubMedGoogle Scholar
  23. 23.
    Caudroy S, Polette M, Nawrocki-Raby B, Cao J, Toole BP, Zucker S, Birembaut P (2002) EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis 19:697–702PubMedCrossRefGoogle Scholar
  24. 24.
    Kanekura T, Chen X, Kanzaki T (2002) Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 99:520–528PubMedCrossRefGoogle Scholar
  25. 25.
    Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S (2000) Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane type matrix metalloproteinase and activated gelatinase A in co-cultures with brain derived fibroblasts. Cancer Lett 157:177–184PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, Wakelam MJ (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21:5765–5772PubMedCrossRefGoogle Scholar
  27. 27.
    Zucker S, Hymowitz M, Rollo EE, Mann R, Conner CE, Cao J, Foda HD, Tompkins DC, Toole BP (2001) Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol 158:1921–1928PubMedGoogle Scholar
  28. 28.
    Marieb EA, Zoltan-Jones A, Li R, Misra S, Ghatak S, Cao J, Zucker S, Toole BP (2004) EMMPRIN promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res 64:1229–1232PubMedCrossRefGoogle Scholar
  29. 29.
    Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C (2004) The microvesicle as a vehicle for EMMPRIN in tumor–stromal interactions. Oncogene 23:956–963PubMedCrossRefGoogle Scholar
  30. 30.
    Haug C, Lenz C, Diaz F, Bachem MG (2004) Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase inducer (EMMPRIN) release by coronary smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1823–1829PubMedCrossRefGoogle Scholar
  31. 31.
    Ellenrieder V, Alber B, Lacher U, Hendler SF, Menke A, Boeck W, Wagner M, Wilda M, Friess H, Büchler M, Adler G, Gress TM (2000) Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer 85:14–20PubMedCrossRefGoogle Scholar
  32. 32.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  33. 33.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379PubMedCrossRefGoogle Scholar
  34. 34.
    Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650PubMedCrossRefGoogle Scholar
  35. 35.
    Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Max G. Bachem
    • 1
    • 3
  • Shaoxia Zhou
    • 1
  • Karin Buck
    • 1
  • Wilhelm Schneiderhan
    • 1
  • Marco Siech
    • 2
  1. 1.Department Clinical Chemistry and Central LaboratoryUniversity of UlmUlmGermany
  2. 2.Department of SurgeryOstalbklinikum AalenAalenGermany
  3. 3.ZE Klinische ChemieUniversität Ulm-KlinikumUlmGermany

Personalised recommendations