Advertisement

Langenbeck's Archives of Surgery

, Volume 391, Issue 6, pp 603–613 | Cite as

Cigarette smoking: cancer risks, carcinogens, and mechanisms

  • Stephen S. Hecht
New Surgical Horizons

Abstract

Background

Cigarette smoking causes about 30% of all cancer mortality in developed countries. Although smoking is decreasing in developed countries, it is increasing in some developing countries.

Discussion

Cigarette smoke contains over 60 well established carcinogens. There are strong links between some of these carcinogens and various types of smoking-induced cancers. Mechanisms by which cigarette smoke carcinogens cause cancer are well established and are discussed here.

Conclusions

A great deal is known about cigarette smoke carcinogens and the mechanisms by which they cause cancer. It is hoped that this will provide new insights for the prevention and cure of tobacco-induced cancer.

Keywords

Carcinogens Cigarette smoke Tobacco Carcinogenesis mechanisms DNA adducts 

Notes

Acknowledgements

The author’s research on cigarette smoking and cancer is supported by grants CA-81301, CA-92025, CA-102502, DA-13333, and ES-11297 from the U.S. National Institutes of Health and RP-00-138 from the American Cancer Society.

References

  1. 1.
    Mackay J, Eriksen M (2002) The tobacco atlas. World Health Organization, Geneva, pp 24–27Google Scholar
  2. 2.
    International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. IARC monographs on the evaluation of carcinogenic risks to humans, vol 83. IARC, Lyon, FR, pp 53–119Google Scholar
  3. 3.
    International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. IARC monographs on the evaluation of carcinogenic risks to humans, vol 83. IARC, Lyon, FR, pp 1179–1187Google Scholar
  4. 4.
    Centers for Disease Control (2005) Cigarette smoking among adults—United States, 2004. MMWR 54:1121–1124Google Scholar
  5. 5.
    Wynder EL, Graham EA (1950) Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma. A study of six hundred and eighty-four proved cases. JAMA 143:329–336Google Scholar
  6. 6.
    Doll R, Hill AB (1950) Smoking and carcinoma of the lung. A preliminary report. Br Med J ii:739–748CrossRefGoogle Scholar
  7. 7.
    U.S. Department of Health and Human Services (2004) The health consequences of smoking: a report of the surgeon general. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health, Rockville, MDGoogle Scholar
  8. 8.
    U.S.Department of Health and Human Services (2006) The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon general. U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Washington, DC, p 709Google Scholar
  9. 9.
    Phillips DH (1983) Fifty years of benzo[a]pyrene. Nature 303:468–472PubMedCrossRefGoogle Scholar
  10. 10.
    International Agency for Research on Cancer (1983) Polynuclear aromatic compounds, part 1, chemical, environmental, and experimental data. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 32. IARC, Lyon, FR, pp 33–91Google Scholar
  11. 11.
    Dipple A, Moschel RC, Bigger CAH (1984) Polynuclear aromatic hydrocarbons. In: Searle CE (ed) Chemical carcinogens, second edition, ACS monograph 182, vol 1. American Chemical Society, Washington, D.C., pp 41–163Google Scholar
  12. 12.
    Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932PubMedCrossRefGoogle Scholar
  13. 13.
    Preussmann R,Stewart BW (1984) N-Nitroso carcinogens. In: Searle CE (ed) Chemical carcinogens, second edition, ACS monograph 182, vol 2. American Chemical Society, Washington, DC, pp 643–828Google Scholar
  14. 14.
    Hecht SS, Hoffmann D (1988) Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis 9:875–884PubMedGoogle Scholar
  15. 15.
    Hecht SS (1998) Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11:559–603PubMedCrossRefGoogle Scholar
  16. 16.
    International Agency for Research on Cancer (2006) Smokeless tobacco and tobacco-specific nitrosamines. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 89. IARC, Lyon, FR (in press)Google Scholar
  17. 17.
    Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125PubMedCrossRefGoogle Scholar
  18. 18.
    Sugimura T (1995) History, present and future, of heterocyclic amines, cooked food mutagens. Princess Takamatsu Symp 23:214–231PubMedGoogle Scholar
  19. 19.
    International Agency for Research on Cancer (1995) Wood dust and formaldehyde. IARC monographs on the evaluation of carcinogenic risks to humans, vol 62. IARC, Lyon, FR, pp 217–362Google Scholar
  20. 20.
    International Agency for Research on Cancer (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide (Part Two). IARC monographs on the evaluation of carcinogenic risks to humans, vol 71. IARC, Lyon, FR, pp 319–451Google Scholar
  21. 21.
    International Agency for Research on Cancer (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 56. IARC, Lyon, FR, pp 115–134Google Scholar
  22. 22.
    International Agency for Research on Cancer (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide (part one). IARC monographs on the evaluation of carcinogenic risks to humans, vol 71. IARC, Lyon, FR, pp 109–225Google Scholar
  23. 23.
    International Agency for Research on Cancer (1982) Some industrial chemicals and dyestuffs. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 29. IARC, Lyon, FR, pp 93–148Google Scholar
  24. 24.
    International Agency for Research on Cancer (1979) Some monomers, plastics and synthetic elastomers, and acrolein. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 19. IARC, Lyon, FR, pp 377–438Google Scholar
  25. 25.
    International Agency for Research on Cancer (1994) Some industrial chemicals. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 60. IARC, Lyon, FR, pp 73–159Google Scholar
  26. 26.
    Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210PubMedCrossRefGoogle Scholar
  27. 27.
    Carmella SG, Chen M, Villalta PW, Gurney JG, Hatsukami DK, Hecht SS (2002) Ethylation and methylation of hemoglobin in smokers and non-smokers. Carcinogenesis 23:1903–1910PubMedCrossRefGoogle Scholar
  28. 28.
    Singh R, Kaur B, Farmer PB (2005) Detection of DNA damage derived from a direct acting ethylating agent present in cigarette smoke by use of liquid chromatography-tandem mass spectrometry. Chem Res Toxicol 18:249–256PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffmann D, Schmeltz I, Hecht SS, Wynder EL (1978) Tobacco carcinogenesis. In: Gelboin H, Ts'o POP (eds) Polycyclic hydrocarbons and cancer. Academic, New York, pp 85–117Google Scholar
  30. 30.
    Deutsch-Wenzel R, Brune H, Grimmer G (1983) Experimental studies in rat lungs on the carcinogenicity and dose–response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst 71:539–544PubMedGoogle Scholar
  31. 31.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451PubMedCrossRefGoogle Scholar
  32. 32.
    Boysen G, Hecht SS (2003) Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat Res 543:17–30PubMedCrossRefGoogle Scholar
  33. 33.
    Phillips DH (2002) Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 23:1979–2004PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Z, Muehlbauer KR, Schmeiser HH, Hergenhahn M, Belharazem D, Hollstein MC (2005) p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors. Cancer Res 65:2583–2587PubMedCrossRefGoogle Scholar
  35. 35.
    Belinsky SA, Foley JF, White CM, Anderson MW, Maronpot RR (1990) Dose–response relationship between O 6-methylguanine formation in Clara cells and induction of pulmonary neoplasia in the rat by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 50:3772–3780PubMedGoogle Scholar
  36. 36.
    Hecht SS (2002) Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 23:907–922PubMedCrossRefGoogle Scholar
  37. 37.
    Shapiro JA, Jacobs EJ, Thun MJ (2000) Cigar smoking in men and risk of death from tobacco-related cancers. J Natl Cancer Inst 92:333–337PubMedCrossRefGoogle Scholar
  38. 38.
    Boffetta P, Pershagen G, Jockel KH, Forastiere F, Gaborieau V, Heinrich J, Jahn I, Kreuzer M, Merletti F, Nyberg F, Rosch F, Simonato L (1999) Cigar and pipe smoking and lung cancer risk: a multicenter study from Europe. J Natl Cancer Inst 91:697–701PubMedCrossRefGoogle Scholar
  39. 39.
    Travis WD, Travis LB, Devesa SS (1995) Lung cancer. Cancer 75:191–202PubMedCrossRefGoogle Scholar
  40. 40.
    Hoffmann D, Hoffmann I, El Bayoumy K (2001) The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol 14:767–790PubMedCrossRefGoogle Scholar
  41. 41.
    International Agency for Research on Cancer (1986) Tobacco smoking. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 38. IARC, Lyon, FR, pp 37–385Google Scholar
  42. 42.
    Hoffmann D, Hecht SS (1990) Advances in tobacco carcinogenesis. In: Cooper CS, Grover PL (eds) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 63–102Google Scholar
  43. 43.
    Lijinsky W (1992) Chemistry and biology Of N-nitroso compounds. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  44. 44.
    Hecht SS, Hoffmann D (1989) The relevance of tobacco-specific nitrosamines to human cancer. Cancer Surv 8:273–294PubMedGoogle Scholar
  45. 45.
    International Agency for Research on Cancer (1995) Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC monographs on the evaluation of carcinogenic risks to humans, vol 63. IARC, Lyon, France, pp 393–407Google Scholar
  46. 46.
    Prokopczyk B, Leder G, Trushin N, Cunningham AJ, Akerkar S, Pittman B, Ramadani M, Straeter J, Beger HG, Henne-Bruns D, El Bayoumy K (2005) 4-Hydroxy-1-(3-pyridyl)-1-butanone, an indicator for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA damage, is not detected in human pancreatic tissue. Cancer Epidemiol Biomarkers Prev 14:540–541PubMedCrossRefGoogle Scholar
  47. 47.
    Rivenson A, Hoffmann D, Prokopczyk B, Amin S, Hecht SS (1988) Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines. Cancer Res 48:6912–6917PubMedGoogle Scholar
  48. 48.
    Prokopczyk B, Hoffmann D, Bologna M, Cunningham AJ, Trushin N, Akerkar S, Boyiri T, Amin S, Desai D, Colosimo S, Pittman B, Leder G, Ramadani M, Henne-Bruns D, Beger HG, El Bayoumy K (2002) Identification of tobacco-derived compounds in human pancreatic juice. Chem Res Toxicol 15:677–685PubMedCrossRefGoogle Scholar
  49. 49.
    Prokopczyk B, Trushin N, Leszczynska J, Waggoner SE, El Bayoumy K (2001) Human cervical tissue metabolizes the tobacco-specific nitrosamine, 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone, via alpha-hydroxylation and carbonyl reduction pathways. Carcinogenesis 22:107–114PubMedCrossRefGoogle Scholar
  50. 50.
    Melikian AA, Sun P, Prokopczyk B, El Bayoumy K, Hoffmann D, Wang X, Waggoner S (1999) Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett 146:127–134PubMedCrossRefGoogle Scholar
  51. 51.
    International Agency for Research on Cancer (1995) Human papillomaviruses. IARC monographs on the evaluation of carcinogenic risks to humans, vol 64. IARC, Lyon, FR, pp 35–378Google Scholar
  52. 52.
    International Agency for Research on Cancer (1973) Some aromatic amines, hydrazine and related substances, N-nitroso compounds and miscellaneous alkylating agents. IARC monographs on the carcinogenic risk of chemicals to man, vol 4. IARC, Lyon, FR, pp 127–136Google Scholar
  53. 53.
    Skipper PL, Tannenbaum SR (1990) Protein adducts in the molecular dosimetry of chemical carcinogens. Carcinogenesis 11:507–518PubMedGoogle Scholar
  54. 54.
    Skipper PL, Peng X, SooHoo CK, Tannenbaum SR (1994) Protein adducts as biomarkers of human carcinogen exposure. Drug Metab Rev 26:111–124PubMedGoogle Scholar
  55. 55.
    Landi MT, Zocchetti C, Bernucci I, Kadlubar FF, Tannenbaum S, Skipper P, Bartsch H, Malaveille C, Shields P, Caporaso NE, Vineis P (1996) Cytochrome P450 1A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels. Cancer Epidemiol Biomark Prev 5:693–698Google Scholar
  56. 56.
    Probst-Hensch NM, Bell DA, Watson MA, Skipper PL, Tannenbaum SR, Chan KK, Ross RK, Yu MC (2000) N-Acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenyl–hemoglobin adduct levels. Cancer Epidemiol Biomark Prev 9:619–623Google Scholar
  57. 57.
    Castelao JE, Yuan JM, Skipper PL, Tannenbaum SR, Gago-Dominguez M, Crowder JS, Ross RK, Yu MC (2001) Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst 93:538–545PubMedCrossRefGoogle Scholar
  58. 58.
    Pryor WA, Stone K, Zang LY, Bermudez E (1998) Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol 11:441–448PubMedCrossRefGoogle Scholar
  59. 59.
    Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650PubMedGoogle Scholar
  60. 60.
    Jalas J, Hecht SS, Murphy SE (2005) Cytochrome P450 2A enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen. Chem Res Toxicol 18:95–110PubMedCrossRefGoogle Scholar
  61. 61.
    Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850PubMedCrossRefGoogle Scholar
  62. 62.
    Armstrong RN (1997) Glutathione-S-transferases. In: Guengerich FP (ed) Comprehensive toxicology: biotransformation, vol 3. Elsevier Science, New York, pp 307–327Google Scholar
  63. 63.
    Burchell B, McGurk K, Brierley CH, Clarke DJ (1997) UDP-glucuronosyltransferases. In: Guengerich FP (ed) Comprehensive toxicology: biotransformation, vol 3. Elsevier Science, New York, pp 401–436Google Scholar
  64. 64.
    Vineis P, Veglia F, Benhamou S, Butkiewicz D, Cascorbi I, Clapper ML, Dolzan V, Haugen A, Hirvonen A, Ingelman-Sundberg M, Kihara M, Kiyohara C, Kremers P, Le Marchand L, Ohshima S, Pastorelli R, Rannug A, Romkes M, Schoket B, Shields P, Strange RC, Stucker I, Sugimura H, Garte S, Gaspari L, Taioli E (2003) CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer 104:650–657PubMedCrossRefGoogle Scholar
  65. 65.
    Liu G, Zhou W, Christiani DC (2005) Molecular epidemiology of non-small cell lung cancer. Semin Respir Crit Care Med 26:265–272PubMedCrossRefGoogle Scholar
  66. 66.
    Ahrendt SA, Decker PA, Alawi EA, Zhu Yr YR, Sanchez-Cespedes M, Yang SC, Haasler GB, Kajdacsy-Balla A, Demeure MJ, Sidransky D (2001) Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 92:1525–1530PubMedCrossRefGoogle Scholar
  67. 67.
    Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116PubMedCrossRefGoogle Scholar
  68. 68.
    Lubet RA, Zhang Z, Wiseman RW, You M (2000) Use of p53 transgenic mice in the development of cancer models for multiple purposes. Exp Lung Res 26:581–593PubMedCrossRefGoogle Scholar
  69. 69.
    Sekido Y, Fong KW, Minna JD (1998) Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1378:F21–F59PubMedGoogle Scholar
  70. 70.
    Bode AM, Dong Z (2005) Signal transduction pathways in cancer development and as targets for cancer prevention. Prog Nucleic Acid Res Mol Biol 79:237–297PubMedGoogle Scholar
  71. 71.
    Hecht SS (2003) Tobacco carcinogens, their biomarkers, and tobacco-induced cancer. Nature Rev Cancer 3:733–744CrossRefGoogle Scholar
  72. 72.
    Schuller HM (2002) Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2:455–463PubMedCrossRefGoogle Scholar
  73. 73.
    West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111:81–90PubMedCrossRefGoogle Scholar
  74. 74.
    Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7:833–839PubMedCrossRefGoogle Scholar
  75. 75.
    Moraitis D, Du B, De Lorenzo MS, Boyle JO, Weksler BB, Cohen EG, Carew JF, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ (2005) Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res 65:664–670PubMedGoogle Scholar
  76. 76.
    Belinsky SA (2005) Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26:1481–1487PubMedCrossRefGoogle Scholar
  77. 77.
    World Health Organization (1997) Tobacco or health: a global status report. WHO, Geneva, pp 10–48Google Scholar
  78. 78.
    Blot WJ, Fraumeni JF Jr (1996) Cancers of the lung and pleura. In: Schottenfeld D, Fraumeni J (eds) Cancer epidemiology and prevention. Oxford University Press, New York, pp 637–665Google Scholar
  79. 79.
    American Cancer Society (2001) Cancer facts and figures 2001. American Cancer Society, Atlanta, GA, pp 29–32Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.The Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations