Advertisement

Langenbeck's Archives of Surgery

, Volume 389, Issue 1, pp 17–22 | Cite as

Decreased collagen type I/III ratio in patients with recurring hernia after implantation of alloplastic prostheses

  • Karsten Junge
  • Uwe Klinge
  • Raphael Rosch
  • Peter R. Mertens
  • Jochen Kirch
  • Bernd Klosterhalfen
  • Petra Lynen
  • Volker Schumpelick
Original Article

Abstract

Background

Abnormal collagen metabolism is suspected to play an important role in the pathogenesis of recurring inguinal and incisional hernias. Whereas alloplastic prostheses are nowadays routinely used, the quantity and quality of collagen formation after repair in humans has not been analysed in a large cohort.

Method

Seventy-eight prostheses (Prolene, Atrium, Marlex, Vypro, Mersilene, Gore-Tex) implanted for inguinal and incisional hernia repair were explanted because of recurrence, chronic pain or infection. The mean implantation period was 17.9±11.2 (range 0.5–48) months. Collagen formation was investigated quantitatively (collagen–protein ratio) and qualitatively (collagen type I/III ratio). Results were related to clinical data that included gender, age, implantation period, indication for implantation/explantation, type and location of prosthesis.

Results

Mean collagen–protein ratio was 45.3±8.5 μg/mg, with significant differences between male (43.8±9.1 μg/mg) and female tissue samples (48.1±6.8 μg/mg, P=0.033). The mean collagen type I/III ratio of all samples investigated was 2.1±1.4. Samples explanted for recurring hernias exhibited a significantly decreased ratio (1.3±0.7, P<0.05) compared to samples explanted because of pain (3.4±1.2) or infection (2.9±1.6). Multivariate analysis excluded independent effects of age, gender, indication for implantation of prostheses, location and implantation period on collagen type I/III ratio.

Conclusion

The present study confirms the importance of a biological approach, next to technical aspects, to the understanding of the pathogenesis of recurrent hernia formation and underscores the presence of a disturbed scarring process. The composition of scar tissue with a lowered collagen type I/III ratio and, therefore, reduced tensile strength may be a major contribution to hernia recurrence.

Keywords

Prostheses Mesh Collagen Recurrence Hernia Extracellular matrix 

Notes

Acknowledgements

The study was supported by BMBF grant project no. 01KS9503/9 (TV B6) for IZKF-BIOMAT (RWTH Aachen) and by the Deutsche Forschungs Gemeinschaft (DFG) Kl 1320/2-1.

References

  1. 1.
    Macintyre IM (2003) Best practice in groin hernia repair. Br J Surg 90:131–132CrossRefPubMedGoogle Scholar
  2. 2.
    Collaboration EH (2000) Mesh compared with non-mesh methods of open groin hernia repair: systematic review of randomized controlled trials. Br J Surg 87:854–859PubMedGoogle Scholar
  3. 3.
    Luijendijk RW, Hop WC, van den Tol MP, de Lange DC, Braaksma MM, IJzermans JN, Boelhouwer RU, de Vries BC, Salu MK, Wereldsma JC, Bruijninckx CM, Jeekel J (2000) A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 343:392–398PubMedGoogle Scholar
  4. 4.
    Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133:378–382PubMedGoogle Scholar
  5. 5.
    Korenkov M, Sauerland S, Arndt M, Bograd L, Neugebauer EA, Troidl H (2002) Randomized clinical trial of suture repair, polypropylene mesh or autodermal hernioplasty for incisional hernia. Br J Surg 89:50–56Google Scholar
  6. 6.
    Cassar K, Munro A (2002) Surgical treatment of incisional hernia. Br J Surg 89:534–545CrossRefPubMedGoogle Scholar
  7. 7.
    Sugerman HJ, Kellum JM, Reines HD, DeMaria EJ, Newsome HH, Lowry JW (1996) Greater risk of incisional hernia with morbidly obese than steroid-dependent patients and low recurrence with prefascial polypropylene mesh. Am J Surg 171:80–84PubMedGoogle Scholar
  8. 8.
    Anthony T, Bergen PC, Kim LT, Henderson M, Fahey T, Rege RV, Turnage RH (2000) Factors affecting recurrence following incisional herniorrhaphy. World J Surg 24:95–100CrossRefPubMedGoogle Scholar
  9. 9.
    Lowham AS, Filipi CJ, Fitzgibbons RJ, Stoppa R, Wantz GE, Felix EL, Crafton WB (1997) Mechanisms of hernia recurrence after preperitoneal mesh repair. Traditional and laparoscopic. Ann Surg 225:422–431PubMedGoogle Scholar
  10. 10.
    Bellon JM, Bajo A, Ga-Honduvilla N, Gimeno MJ, Pascual G, Guerrero A, Bujan J (2001) Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann Surg 233:287–291CrossRefPubMedGoogle Scholar
  11. 11.
    Rosch R, Klinge U, Si Z, Junge K, Klosterhalfen B, Schumpelick V (2002) A role for the collagen I/III and MMP-1/-13 genes in primary inguinal hernia? BMC Med Genet 3:2Google Scholar
  12. 12.
    Si Z, Rhanjit B, Rosch R, Mertens PR, Klosterhalfen B, Klinge U (2002) Impaired balance of type I and type III procollagen mRNA in cultured fibroblasts of patients with incisional hernia. Surgery 131:324–331CrossRefPubMedGoogle Scholar
  13. 13.
    Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176:26S–38SCrossRefPubMedGoogle Scholar
  14. 14.
    Hurme T, Kalimo H, Sandberg M, Lehto M, Vuorio E (1991) Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Lab Invest 64:76–84PubMedGoogle Scholar
  15. 15.
    Lehto M, Sims TJ, Bailey AJ (1985) Skeletal muscle injury-molecular changes in the collagen during healing. Res Exp Med (Berl) 185:95–106Google Scholar
  16. 16.
    Dale PD, Sherratt JA, Maini PK (1996) A mathematical model for collagen fibre formation during foetal and adult dermal wound healing. Proc R Soc Lond B Biol Sci 263:653–660PubMedGoogle Scholar
  17. 17.
    Birk DE, Mayne R (1997) Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 72:352–361PubMedGoogle Scholar
  18. 18.
    Lopez-De Leon A, Rojkind M (1985) A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 33:737–743PubMedGoogle Scholar
  19. 19.
    Junqueira LC, Cossermelli W, Brentani R (1978) Differential staining of collagens type I, II and III by Sirius red and polarization microscopy. Arch Histol Jpn 41:267–274PubMedGoogle Scholar
  20. 20.
    Rutkow IM, Robbins AW (1993) Demographic, classificatory, and socioeconomic aspects of hernia repair in the United States. Surg Clin North Am 73:413–426PubMedGoogle Scholar
  21. 21.
    Friedman DW, Boyd CD, Norton P, Greco RS, Boyarsky AH, Mackenzie JW, Deak SB (1993) Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg 218: 754–760PubMedGoogle Scholar
  22. 22.
    Klinge U, Prescher A, Klosterhalfen B, Schumpelick V (1997) Development and pathophysiology of abdominal wall defects. Chirurg 68:293–303CrossRefPubMedGoogle Scholar
  23. 23.
    Jorgensen LN, Sorensen LT, Kallehave F, Vange J, Gottrup F (2002) Premenopausal women deposit more collagen than men during healing of an experimental wound. Surgery 131:338–343CrossRefPubMedGoogle Scholar
  24. 24.
    Lenhardt R, Hopf HW, Marker E, Akca O, Kurz A, Scheuenstuhl H, Sessler DI (2000) Perioperative collagen deposition in elderly and young men and women. Arch Surg 135:71–74PubMedGoogle Scholar
  25. 25.
    Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW (1999) Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 155:1137–1146PubMedGoogle Scholar
  26. 26.
    Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks. Eur J Biochem 122:205–213PubMedGoogle Scholar
  27. 27.
    Conner WT, Peacock EE (1971) The etiology of inguinal hernia. Surg Forum 22:69–71PubMedGoogle Scholar
  28. 28.
    Zheng H, Si Z, Kasperk R, Bhardwaj R, Schumpelick V, Klinge U, Klosterhalfen B (2002) Recurrent inguinal hernia: disease of the collagen matrix? World J Surg 26:401–408CrossRefPubMedGoogle Scholar
  29. 29.
    Klinge U, Si ZY, Zheng H, Schumpelick V, Bhardwaj RS, Klosterhalfen B (2000) Abnormal collagen I to III distribution in the skin of patients with incisional hernia. Eur Surg Res 32:43–48CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Karsten Junge
    • 1
    • 2
  • Uwe Klinge
    • 1
    • 2
  • Raphael Rosch
    • 1
    • 2
  • Peter R. Mertens
    • 3
  • Jochen Kirch
    • 1
  • Bernd Klosterhalfen
    • 2
    • 4
  • Petra Lynen
    • 5
  • Volker Schumpelick
    • 1
  1. 1.Department of SurgeryRWTH AachenAachenGermany
  2. 2.German Centre of Excellence for Biomaterial and Implant PathologyRWTH AachenAachenGermany
  3. 3.Medical Clinic IIRWTH AachenAachenGermany
  4. 4.Institute of PathologyRWTH AachenAachenGermany
  5. 5.IZKF BIOMATRWTH AachenAachenGermany

Personalised recommendations