Advertisement

Biological Cybernetics

, Volume 75, Issue 4, pp 309–319 | Cite as

A dynamical model for reflex activated head movements in the horizontal plane

  • G. C. Y. Peng
  • T. C. Hain
  • B. W. Peterson

Abstract.

 We present a controls systems model of horizontal-plane head movements during perturbations of the trunk, which for the first time interfaces a model of the human head with neural feedback controllers representing the vestibulocollic (VCR) and the cervicocollic (CCR) reflexes. This model is homeomorphic such that model structure and parameters are drawn directly from anthropomorphic, biomechanical and physiological studies. Using control theory we analyzed the system model in the time and frequency domains, simulating neck movement responses to input perturbations of the trunk. Without reflex control, the head and neck system produced a second-order underdamped response with a 5.2 dB resonant peak at 2.1 Hz. Adding the CCR component to the system dampened the response by approximately 7%. Adding the VCR component dampened head oscillations by 75%. The VCR also improved low-frequency compensation by increasing the gain and phase lag, creating a phase minimum at 0.1 Hz and a phase peak at 1.1 Hz. Combining all three components (mechanics, VCR and CCR) linearly in the head and neck system reduced the amplitude of the resonant peak to 1.1 dB and increased the resonant frequency to 2.9 Hz. The closed loop results closely fit human data, and explain quantitatively the characteristic phase peak often observed.

Keywords

Head Movement Human Head Feedback Controller Resonant Peak Movement Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • G. C. Y. Peng
    • 1
  • T. C. Hain
    • 2
  • B. W. Peterson
    • 1
  1. 1.Northwestern University, Department of Biomedical Engineering, Department of Neurology, Pathology 2-210, The Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD 21287 - 6921, USATP
  2. 2.Northwestern University Medical School, Chicago, IL 60611, USAUS

Personalised recommendations