Advertisement

A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion

  • Mantas NarisEmail author
  • Nicholas S. Szczecinski
  • Roger D. Quinn
Original Article

Abstract

In this work, we analyze a simplified, dynamical, closed-loop, neuromechanical simulation of insect joint control. We are specifically interested in two elements: (1) how slow muscle fibers may serve as temporal integrators of sensory feedback and (2) the role of common inhibitory (CI) motor neurons in resetting this integration when the commanded position changes, particularly during steady-state walking. Despite the simplicity of the model, we show that slow muscle fibers increase the accuracy of limb positioning, even for motions much shorter than the relaxation time of the fiber; this increase in accuracy is due to the slow dynamics of the fibers; the CI motor neuron plays a critical role in accelerating muscle relaxation when the limb moves to a new position; as in the animal, this architecture enables the control of the stance phase speed, independent of swing phase amplitude or duration, by changing the gain of sensory feedback to the stance phase muscles. We discuss how this relates to other models, and how it could be applied to robotic control.

Keywords

Insect neuromechanics Dynamic scaling Insect neuromuscular joint control Common inhibitory motor neurons Robotics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ache JM, Matheson T (2013) Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Curr Biol 23(15):1418–1426.  https://doi.org/10.1016/j.cub.2013.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. J Neurophysiol 85(2):594–604CrossRefGoogle Scholar
  3. Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92(1):42–51CrossRefGoogle Scholar
  4. Akay T, Ludwar BC, Göritz ML, Schmitz J, Büschges A (2007) Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 27(12):3285–3294CrossRefGoogle Scholar
  5. Ayali A, Borgmann A, Bueschges A, Couzin-Fuchs E, Daun-Gruhn S, Holmes P (2015) The comparative investigation of the stick insect and cockroach models in the study of insect locomotion. Curr Opin Insect Sci 12:1–10.  https://doi.org/10.1016/j.cois.2015.07.004 CrossRefGoogle Scholar
  6. Ballantyne D, Rathmayer W (1981) On the function of the common inhibitory neurone in the walking legs of the crab, Eriphia spinifrons. J Comp Physiol 143(1):111–122CrossRefGoogle Scholar
  7. Bässler U (1986) Afferent control of walking movements in the stick insect Cuniculina impigra II. Reflex reversal and the release of the swing phase in the restrained foreleg. J Comp Physiol A Sens Neural Behav Physiol 158(3):351–362CrossRefGoogle Scholar
  8. Bässler U, Stein W (1996) Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system. J Exp Biol 199(Pt 10):2185–98Google Scholar
  9. Bender JA, Simpson EM, Ritzmann RE (2010) Computer-assisted 3D kinematic analysis of all leg joints in walking insects. PLoS One 5(10):e13617.  https://doi.org/10.1371/journal.pone.0013617 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE (2011) Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. J Exp Biol 214(12):2057–2064.  https://doi.org/10.1242/jeb.056481 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bidaye SS, Bockemühl T, Büschges A (2017) Six-legged walking in insects: how cpgs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J Neurophysiol 119(2):459–475.  https://doi.org/10.1152/jn.00658.2017 CrossRefPubMedGoogle Scholar
  12. Blümel M, Guschlbauer C, Daun-Gruhn S, Hooper SL, Büschges A (2012a) Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation. Biol Cybern 106(10):559–571.  https://doi.org/10.1007/s00422-012-0530-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blümel M, Hooper SL, Guschlbauer C, White WE, Büschges A (2012b) Determining all parameters necessary to build hill-type muscle models from experiments on single muscles. Biol Cybern 106(10):543–558.  https://doi.org/10.1007/s00422-012-0531-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burns M, Usherwood P (1979) The control of walking in orthoptera: II. Motor neurone activity in normal free-walking animals. J Exp Biol 79(1):69–98Google Scholar
  15. Burrows M, Morris G (2001) The kinematics and neural control of high-speed kicking movements in the locust. J Exp Biol 204(20):3471–3481PubMedGoogle Scholar
  16. Büschges A, Schmitz J (1991) Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. J Neurobiol 22(3):224–237.  https://doi.org/10.1002/neu.480220303 CrossRefPubMedGoogle Scholar
  17. Buschmann T, Ewald A, von Twickel A, Büschges A (2015) Controlling legs for locomotion-insights from robotics and neurobiology. Bioinspir Biomim 10(4):041001.  https://doi.org/10.1088/1748-3190/10/4/041001 CrossRefPubMedGoogle Scholar
  18. Cruse H (2002) The functional sense of central oscillations in walking. Biol Cybern 86(4):271–280.  https://doi.org/10.1007/s00422-001-0301-2 CrossRefPubMedGoogle Scholar
  19. Daun-Gruhn S, Büschges A (2011) From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol Cybern 105(1):71–88.  https://doi.org/10.1007/s00422-011-0446-6 CrossRefPubMedGoogle Scholar
  20. Deng K, Szczecinski NS, Arnold D, Andrada E, Fischer MS, Quinn RD, Hunt AJ (2019) Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4(1):21.  https://doi.org/10.3390/biomimetics4010021 CrossRefPubMedCentralGoogle Scholar
  21. Dürr V, Theunissen LM, Dallmann CJ, Hoinville T, Schmitz J (2018) Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav Ecol Sociobiol 72(1):15.  https://doi.org/10.1007/s00265-017-2412-3 CrossRefGoogle Scholar
  22. Full R, Ahn A (1995) Static forces and moments generated in the insect leg: comparison of a three-dimensional musculo-skeletal computer model with experimental measurements. J Exp Biol 198(6):1285–1298 9319155PubMedGoogle Scholar
  23. Gabriel JP, Büschges A (2007) Control of stepping velocity in a single insect leg during walking. Philos Trans R Soc Lond A Math Phys Eng Sci 365(1850):251–271.  https://doi.org/10.1098/rsta.2006.1912 CrossRefGoogle Scholar
  24. Goldammer J, Mantziaris C, Büschges A, Schmidt J (2018) Calcium imaging of CPG-evoked activity in efferent neurons of the stick insect. PLoS ONE 13(8):1–21.  https://doi.org/10.1371/journal.pone.0202822 CrossRefGoogle Scholar
  25. Goldsmith C, Szczecinski N, Quinn R (2019) Drosophibot: a fruit fly inspired bio-robot. In: Martinez-Hernandez U, Vouloutsi V, Mura A, Mangan M, Asada M, Prescott TJ, Verschure PF (eds) Biomimetic and biohybrid systems. Springer, Cham, pp 146–157CrossRefGoogle Scholar
  26. Guschlbauer C, Scharstein H, Büschges A (2007) The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle. J Exp Biol 210(6):1092–1108.  https://doi.org/10.1242/jeb.02729 CrossRefPubMedGoogle Scholar
  27. Hess D, Büschges A (1999) Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J Neurophysiol 81(4):1856–1865CrossRefGoogle Scholar
  28. Hooper SL (2012) Body size and the neural control of movement. Curr Biol 22(9):R318–R322.  https://doi.org/10.1016/j.cub.2012.02.048 CrossRefPubMedGoogle Scholar
  29. Hooper SL, Guschlbauer C, von Uckermann G, Büschges A (2007) Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles. J Neurophysiol 97(2):1428–44.  https://doi.org/10.1152/jn.01014.2006 CrossRefPubMedGoogle Scholar
  30. Hooper SL, Guschlbauer C, Blümel M, Rosenbaum P, Gruhn M, Akay T, Büschges A (2009) Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J Neurosci 29(13):4109–4119.  https://doi.org/10.1523/JNEUROSCI.5510-08.2009 19339606CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hoyle G, Burrows M (1973) Neural mechanisms underlying behavior in the locust Schistocerca gregaria I. Physiology of identified motorneurons in the metathoracic ganglion. J Neurobiol 4(1):3–41CrossRefGoogle Scholar
  32. Iles JF, Pearson KG (1971) Coxal depressor muscles of the cockroach and the role of peripheral inhibition. J Exp Biol 55(1):151–164PubMedGoogle Scholar
  33. Jan LY, Jan YN (1976a) L-glutamate as an excitatory transmitter at the drosophila larval neuromuscular junction. J Physiol 262(1):215–236.  https://doi.org/10.1113/jphysiol.1976.sp011593 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jan LY, Jan YN (1976b) Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 262(1):189–214.  https://doi.org/10.1113/jphysiol.1976.sp011592 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  36. Laurent G, Burrows M (1989) Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. J Neurosci Off J Soc Neurosci 9(9):3030–3039CrossRefGoogle Scholar
  37. Mamiya A, Gurung P, Tuthill JC (2018) Neural coding of leg proprioception in drosophila. Neuron 100(3):636–650.  https://doi.org/10.1016/j.neuron.2018.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Morris LG, Hooper SL (1997a) Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: slow muscle properties can transform rhythmic input into tonic output. J Neurosci Off J Soc Neurosci 17(15):3433–42CrossRefGoogle Scholar
  39. Morris LG, Hooper SL (1997b) Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: spike number- versus spike frequency-dependent domains. J Neurosci Off J Soc Neurosci 17(15):5956–71CrossRefGoogle Scholar
  40. Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193Google Scholar
  41. Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58(3):725–744Google Scholar
  42. Rathmayer W, Erxleben C (1983) Identified muscle fibers in a crab. J Comp Physiol 152:411–420.  https://doi.org/10.1007/BF00606246 CrossRefGoogle Scholar
  43. Ritzmann RE, Quinn RD, Watson JT, Zill SN (2000) Insect walking and biorobotics: a relationship with mutual benefits. Bioscience 50(1):23–33CrossRefGoogle Scholar
  44. Rubeo S, Szczecinski N, Quinn R (2017) A synthetic nervous system controls a simulated cockroach. Appl Sci 8(1):6.  https://doi.org/10.3390/app8010006 CrossRefGoogle Scholar
  45. Ryckebusch S, Laurent G (1993) Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J Neurophysiol 69(5):1583–95CrossRefGoogle Scholar
  46. Sauer AE, Driesang RB, Büschges A, Bässler U (1996) Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect. J Comput Neurosci 3(3):179–198.  https://doi.org/10.1007/BF00161131 CrossRefPubMedGoogle Scholar
  47. Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H (2013) A hexapod walker using a heterarchical architecture for action selection. Front Comput Neurosci 7(September):1–17.  https://doi.org/10.3389/fncom.2013.00126 CrossRefGoogle Scholar
  48. Schmitz J (1986) The depressor Trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus. Biol Cybern 34(1972):25–34.  https://doi.org/10.1007/BF00363975 CrossRefGoogle Scholar
  49. Shadmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66(6):463–477.  https://doi.org/10.1007/BF00204111 CrossRefPubMedGoogle Scholar
  50. Shaw KM, Lyttle DN, Gill JP, Cullins MJ, McManus JM, Lu H, Thomas PJ, Chiel HJ (2015) The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J Comput Neurosci 38(1):25–51CrossRefGoogle Scholar
  51. Shinozaki H (1988) Pharmacology of the glutamate receptor. Progr Neurobiol 30(5):399–435.  https://doi.org/10.1016/0301-0082(88)90009-3 CrossRefGoogle Scholar
  52. Szczecinski NS, Quinn RD (2017a) MantisBot changes stepping speed by entraining CPGs to positive velocity feedback. Lect Notes Artif Intell 10384:440–52Google Scholar
  53. Szczecinski NS, Quinn RD (2017b) Template for the neural control of directed walking generalized to all legs of mantisbot. Bioinspir Biomim 12(4):045001.  https://doi.org/10.1088/1748-3190/aa6dd9 CrossRefPubMedGoogle Scholar
  54. Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE (2014) A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol Cybern 108(1):1–21.  https://doi.org/10.1007/s00422-013-0573-3 CrossRefPubMedGoogle Scholar
  55. Szczecinski NS, Hunt AJ, Quinn RD (2017a) Design process and tools for dynamic neuromechanical models and robot controllers. Biol Cybern 111(1):105–127.  https://doi.org/10.1007/s00422-017-0711-4 CrossRefPubMedGoogle Scholar
  56. Szczecinski NS, Hunt AJ, Quinn RD (2017b) A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front Neurorobot 11:37.  https://doi.org/10.3389/fnbot.2017.00037 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Toth TI, Grabowska M, Schmidt J, Büschges A, Daun-Gruhn S (2013a) A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg. PLoS One 8(11):e78246.  https://doi.org/10.1371/journal.pone.0078246 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Toth TI, Schmidt J, Büschges A, Daun-Gruhn S (2013b) A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system. PLoS One 8(11):e78247.  https://doi.org/10.1371/journal.pone.0078247 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Trappenberg T (2009) Fundamentals of computational neuroscience. Oxford Uuniversity Press, OxfordGoogle Scholar
  60. Usherwood PNR, Runion HI (1970) Analysis of the mechanical responses of metathoracic extensor tibiae muscles of free-walking locusts. J Exp Biol 53:39–58Google Scholar
  61. Watson JT, Ritzmann RE (1997a) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. J Comp Physiol A 182(1):11–22.  https://doi.org/10.1007/s003590050153 CrossRefGoogle Scholar
  62. Watson JT, Ritzmann RE (1997b) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. J Comp Physiol A 182(1):23–33.  https://doi.org/10.1007/s003590050154 CrossRefGoogle Scholar
  63. Watson JT, Ritzmann RE (1998) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. J Comp Physiol A 182(1):23–33CrossRefGoogle Scholar
  64. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24CrossRefGoogle Scholar
  65. Wolf H (1990) Activity patterns of inhibitory motoneurones and their impact on leg movement in tethered walking locusts. J Exp Biol 304:281–304Google Scholar
  66. Wolf H (2014) Inhibitory motoneurons in arthropod motor control: organisation, function, evolution. J Comp Physiol A 200(8):693–710.  https://doi.org/10.1007/s00359-014-0922-2 CrossRefGoogle Scholar
  67. Zakotnik J, Matheson T, Dürr V (2006) Co-contraction and passive forces facilitate load compensation of aimed limb movements. J Neurosci 26(19):4995–5007.  https://doi.org/10.1523/JNEUROSCI.0161-06.2006 16687491CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bio-Inspired Perception and Robotics LaboratoryUniversity of Colorado BoulderBoulderUSA
  2. 2.Biologically Inspired Robotics LaboratoryCase Western Reserve UniversityClevelandUSA

Personalised recommendations