Advertisement

Biological Cybernetics

, Volume 113, Issue 3, pp 201–225 | Cite as

A review on animal–robot interaction: from bio-hybrid organisms to mixed societies

  • Donato RomanoEmail author
  • Elisa Donati
  • Giovanni Benelli
  • Cesare Stefanini
Review

Abstract

Living organisms are far superior to state-of-the-art robots as they have evolved a wide number of capabilities that far encompass our most advanced technologies. The merging of biological and artificial world, both physically and cognitively, represents a new trend in robotics that provides promising prospects to revolutionize the paradigms of conventional bio-inspired design as well as biological research. In this review, a comprehensive definition of animal–robot interactive technologies is given. They can be at animal level, by augmenting physical or mental capabilities through an integrated technology, or at group level, in which real animals interact with robotic conspecifics. Furthermore, an overview of the current state of the art and the recent trends in this novel context is provided. Bio-hybrid organisms represent a promising research area allowing us to understand how a biological apparatus (e.g. muscular and/or neural) works, thanks to the interaction with the integrated technologies. Furthermore, by using artificial agents, it is possible to shed light on social behaviours characterizing mixed societies. The robots can be used to manipulate groups of living organisms to understand self-organization and the evolution of cooperative behaviour and communication.

Keyword

Animal–robot interaction Ethorobotics Bio-hybrid organism Mixed society 

Notes

Funding

This work was funded by the EU project subCULTron (submarine cultures perform long-term robotic exploration of unconventional environmental niches) number 640967. The funder had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

References

  1. Abaid N, Bartolini T, Macrì S, Porfiri M (2012) Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav Brain Res 233(2):545–553Google Scholar
  2. Abaid N, Marras S, Fitzgibbons C, Porfiri M (2013) Modulation of risk-taking behaviour in golden shiners (Notemigonus crysoleucas) using robotic fish. Behav Process 100:9–12Google Scholar
  3. Aktakka EE, Kim H, Najafi K (2011) Energy scavenging from insect flight. J Micromech Microeng 21(9):095016Google Scholar
  4. Ando N, Kanzaki R (2017) Using insects to drive mobile robots—hybrid robots bridge the gap between biological and artificial systems. Arthropod Struct Dev.  https://doi.org/10.1016/j.asd.2017.02.003 Google Scholar
  5. ASAB/ABS (2004) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 99:1–9Google Scholar
  6. Aureli M, Fiorilli F, Porfiri M (2012) Portraits of self-organization in fish schools interacting with robots. Phys D 9:908–920Google Scholar
  7. Ayers J, Clarac F (1978) Neuromuscular strategies underlying different behavioural acts in a multifunctional crustacean leg joint. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 128(1):81–94Google Scholar
  8. Ayers JL Jr, Davis WJ (1977) Neuronal control of locomotion in the lobster, Homarus americanus. J Comp Physiol 115(1):1–27Google Scholar
  9. Bao L, Zheng N, Zhao H, Hao Y, Zheng H, Hu F, Zheng X (2011) Flight control of tethered honeybees using neural electrical stimulation. In: 2011 5th international IEEE/EMBS conference on neural engineering (NER). IEEE, pp 558–561Google Scholar
  10. Bartolini T, Mwaffo V, Showler A, Macrì S, Butail S, Porfiri M (2016) Zebrafish response to 3D printed shoals of conspecifics: the effect of body size. Bioinspir Biomim 11(2):026003Google Scholar
  11. Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically inspired approaches to robotics: What can we learn from insects? Commun ACM 40(3):30–38Google Scholar
  12. Benelli G, Romano D, Rocchigiani G, Caselli A, Mancianti F, Canale A, Stefanini C (2018) Behavioral asymmetries in ticks–lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues. Acta Trop 178:176–181Google Scholar
  13. Bierbach D, Lukas JA, Bergmann A, Elsner K, Höhne L, Weber C, Weimar N, Arias-Rodriguez L, Mönk HJ, Nguyen H, Romanczuk P, Landgraf T, Krause J (2018a) Insights into the social behavior of surface and cave-dwelling fish (Poecilia mexicana) in light and darkness through the use of a biomimetic robot. Front Robot AI 5:3.  https://doi.org/10.3389/frobt.2018.00003 Google Scholar
  14. Bierbach D, Landgraf T, Romanczuk P, Lukas J, Nguyen H, Wolf M, Krause J (2018b) Using a robotic fish to investigate individual differences in social responsiveness in the guppy. bioRxiv  https://doi.org/10.1101/304501
  15. Bodi M, Möslinger C, Thenius R, Schmickl T (2015) BEECLUST used for exploration tasks in autonomous underwater vehicles. IFAC PapersOnLine 48(1):819–824Google Scholar
  16. Bonnet F, Binder S, de Oliveria M E, Halloy J, Mondada F (2014) A miniature mobile robot developed to be socially integrated with species of small fish. In: 2014 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp 747–752Google Scholar
  17. Bonnet F, Crot N, Burnier D, Mondada F (2016a) Design methods for miniature underwater soft robots. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 1365–1370Google Scholar
  18. Bonnet F, Kato Y, Halloy J, Mondada F (2016b) Infiltrating the zebrafish swarm: design, implementation and experimental tests of a miniature robotic fish lure for fish–robot interaction studies. Artif Life Robot 21(3):239–246Google Scholar
  19. Bonnet F, Cazenille L, Séguret A, Gribovskiy A, Collignon B, Halloy J, Mondada F (2017a) Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies. Int J Adv Robot Syst 14(3):1729881417706628Google Scholar
  20. Bonnet F, Cazenille L, Gribovskiy A, Halloy J, Mondada F (2017b) Multi-robot control and tracking framework for bio-hybrid systems with closed-loop interaction. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4449–4456Google Scholar
  21. Bonnet F, Gribovskiy A, Halloy J, Mondada F (2018) Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor. Swarm Intelligence 12:1–18Google Scholar
  22. Bonsignori G, Stefanini C, Scarfogliero U, Mintchev S, Benelli G, Dario P (2013) The green leafhopper, Cicadella viridis (Hemiptera, Auchenorrhyncha, Cicadellidae), jumps with near-constant acceleration. J Exp Biol 216(7):1270–1279Google Scholar
  23. Bozkurt A, Paul A, Pulla S, Ramkumar A, Blossey B, Ewer J et al (2007) Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle. In: IEEE 20th international conference on micro electro mechanical systems, 2007. MEMS. IEEE, pp 405–408Google Scholar
  24. Bozkurt A, Gilmour R, Stern D, Lal A (2008) MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control. In: IEEE 21st international conference on micro electro mechanical systems, 2008. MEMS 2008. IEEE, pp 160–163Google Scholar
  25. Bozkurt A, Lal A, Gilmour R (2009) Radio control of insects for biobotic domestication. In: 4th international IEEE/EMBS conference on neural engineering, 2009. NER’09. IEEE, pp 215–218Google Scholar
  26. Bozkurt A, Lobaton E, Sichitiu M (2016) A biobotic distributed sensor network for under-rubble search and rescue. Computer 49(5):38–46Google Scholar
  27. Breazeal C, Dautenhahn K, Kanda T (2016) Social robotics. Springer handbook of robotics. Springer, Cham, pp 1935–1972Google Scholar
  28. Brian Smith C, Martins EP (2006) Display plasticity in response to a robotic lizard: signal matching or song sharing in lizards? Ethology 112(10):955–962Google Scholar
  29. Brown MF, Brown AA (2017) The promise of cyborg intelligence. Learn Behav 45(1):5–6Google Scholar
  30. Butail S, Bartolini T, Porfiri M (2013) Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS ONE 8(10):e76123Google Scholar
  31. Butail S, Polverino G, Phamduy P, Del Sette F, Porfiri M (2014) Influence of robotic shoal size, configuration, and activity on zebrafish behaviour in a free-swimming environment. Behav Brain Res 275:269–280Google Scholar
  32. Butail S, Mwaffo V, Porfiri M (2016) Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Phys Rev E 93(4):042411Google Scholar
  33. Butail S, Mwaffo V, Porfiri M (2017) Inferring leadership in zebrafish pairs: an information-theoretic approach. In: American control conference (ACC), 2017. IEEE, pp 2040–2040Google Scholar
  34. Butler SR, Fernández-Juricic E (2014) European starlings recognize the location of robotic conspecific attention. Biol Lett 10(10):20140665Google Scholar
  35. Cao F, Zhang C, Choo HY, Sato H (2016) Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait. J R Soc Interface 13(116):20160060Google Scholar
  36. Cazenille L, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche N, Halloy J (2017) Automated calibration of a biomimetic space-dependent model for zebrafish and robot collective behaviour in a structured environment. In: Conference on biomimetic and biohybrid systems. Springer, Cham, pp 107–118Google Scholar
  37. Cazenille L, Collignon B, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche N, Halloy J (2018a) How mimetic should a robotic fish be to socially integrate into zebrafish groups? Bioinspir Biomim 13(2):025001.  https://doi.org/10.1088/1748-3190/aa8f6a Google Scholar
  38. Cazenille L, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche N, Halloy J (2018b) How to blend a robot within a group of zebrafish: achieving social acceptance through real-time calibration of a multi-level behavioural model. arXiv preprint arXiv:1805.11371
  39. Cham JG, Bailey SA, Clark JE, Full RJ, Cutkosky MR (2002) Fast and robust: hexapedal robots via shape deposition manufacturing. Int J Robot Res 21(10–11):869–882Google Scholar
  40. Choo HY, Li Y, Cao F, Sato H (2016) Electrical stimulation of coleopteran muscle for initiating flight. PLoS ONE 11(4):e0151808Google Scholar
  41. Cianca V, Bartolini T, Porfiri M, Macrì S (2013) A robotics-based behavioural paradigm to measure anxiety-related responses in zebrafish. PLoS ONE 8(7):e69661Google Scholar
  42. Cole J, Mohammadzadeh F, Bollinger C, Latif T, Bozkurt A, Lobaton E (2017) A study on motion mode identification for cyborg roaches. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2652–2656Google Scholar
  43. Cord-Cruz G, Ruberto T, Neri D, Porfiri M (2017) Zebrafish response to live predator and biologically-inspired robot in a circular arena. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring. International Society for Optics and Photonics, p 101620PGoogle Scholar
  44. Couzin ID (2009) Collective cognition in animal groups. Trends in Cognitive Sciences 13(1):36–43Google Scholar
  45. De Margerie E, Lumineau S, Houdelier C, Yris MR (2011) Influence of a mobile robot on the spatial behaviour of quail chicks. Bioinspir Biomim 6(3):034001Google Scholar
  46. De Margerie E, Peris A, Pittet F, Houdelier C, Lumineau S, Richard-Yris MA (2013) Effect of mothering on the spatial exploratory behaviour of quail chicks. Dev Psychobiol 55(3):256–264Google Scholar
  47. Decker M, Dillmann R, Dreier T, Fischer M, Gutmann M, Ott I, genannt Döhmann IS (2011) Service robotics: Do you know your new companion? Framing an interdisciplinary technology assessment. Poiesis Prax 8(1):25–44Google Scholar
  48. Dirafzoon A, Bozkurt A, Lobaton E (2017a) A framework for mapping with biobotic insect networks: from local to global maps. Robot Auton Syst 88:79–96Google Scholar
  49. Dirafzoon A, Bozkurt A, Lobaton E (2017b) Geometric learning and topological inference with biobotic networks. IEEE Trans Signal Inf Process Netw 3(1):200–215Google Scholar
  50. Doan TTV, Sato H (2016) Insect-machine hybrid system: remote radio control of a freely flying beetle (Mercynorrhina torquata). J Vis Exp 115:e54260–e54260Google Scholar
  51. Dodd A (2014) The trouble with insect cyborgs. Soc Anim 22(2):153–173Google Scholar
  52. Donati E, Worm M, Mintchev S, Van Der Wiel M, Benelli G, Von Der Emde G, Stefanini C (2016) Investigation of collective behaviour and electrocommunication in the weakly electric fish, Mormyrus rume, through a biomimetic robotic dummy fish. Bioinspir Biomim 11(6):066009Google Scholar
  53. El Ichi-Ribault S, Alcaraz JP, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366Google Scholar
  54. El Khoury R, Ventura R B, Cord-Cruz G, Ruberto T, Porfiri M (2018) Interactive experiments in a robotics-based platform to simulate zebrafish response to a predator. In: Bioinspiration, biomimetics, and bioreplication VIII. International Society for Optics and Photonics, vol 10593. SPIE, p 105930IGoogle Scholar
  55. Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448Google Scholar
  56. Erickson JC, Herrera M, Bustamante M, Shingiro A, Bowen T (2015) Effective stimulus parameters for directed locomotion in Madagascar hissing cockroach biobot. PLoS ONE 10(8):e0134348Google Scholar
  57. Faria JJ, Dyer JR, Clément RO, Couzin ID, Holt N, Ward AJ et al (2010) A novel method for investigating the collective behaviour of fish: introducing ‘Robofish’. Behav Ecol Sociobiol 64(8):1211–1218Google Scholar
  58. Fernández-Juricic E, Kowalski V (2011) Where does a flock end from an information perspective? A comparative experiment with live and robotic birds. Behav Ecol 22(6):1304–1311Google Scholar
  59. Fernández-Juricic E, Gilak N, Mcdonald JC, Pithia P, Valcarcel A (2006) A dynamic method to study the transmission of social foraging information in flocks using robots. Anim Behav 71(4):901–911Google Scholar
  60. Folkertsma GA, Straatman W, Nijenhuis N, Venner CH, Stramigioli S (2017) Robird: a robotic bird of prey. IEEE Robot Autom Mag 24(3):22–29Google Scholar
  61. Forlizzi J and DiSalvo C (2006) Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human–robot interaction. ACM, pp 258–265Google Scholar
  62. Frohnwieser A, Murray JC, Pike TW, Wilkinson A (2016) Using robots to understand animal cognition. J Exp Anal Behav 105(1):14–22Google Scholar
  63. Fry SN, Rohrseitz N, Straw AD, Dickinson MH (2009) Visual control of flight speed in Drosophila melanogaster. J Exp Biol 212(8):1120–1130Google Scholar
  64. Fujiwara D, Iizuka K, Matsumura Y, Moriyama T, Watanabe R, Enomoto K et al (2012) The effect of mobile robot on group behaviour of animals. J Robot Mechatron 24(6):1071–1079Google Scholar
  65. Garnier S (2011) From ants to robots and back: How robotics can contribute to the study of collective animal behaviour. Bio-inspired self-organizing robotic systems. Springer, Berlin, pp 105–120Google Scholar
  66. Giampalmo SL, Absher BF, Bourne WT, Steves LE, Vodenski VV, O’Donnell P M, Erickson JC (2011) Generation of complex motor patterns in American grasshopper via current-controlled thoracic electrical interfacing. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC. IEEE, pp 1275–1278Google Scholar
  67. Göth A, Evans CS (2004) Social responses without early experience: Australian brush-turkey chicks use specific visual cues to aggregate with conspecifics. J Exp Biol 207(13):2199–2208Google Scholar
  68. Gribovskiy A, Halloy J, Deneubourg JL, Bleuler H, Mondada F (2010) Towards mixed societies of chickens and robots. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4722–4728Google Scholar
  69. Gribovskiy A, Mondada F, Deneubourg JL, Cazenille L, Bredeche N, Halloy J (2015) Automated analysis of behavioural variability and filial imprinting of chicks (G. gallus), using autonomous robots. arXiv:1509.01957
  70. Gribovskiy A, Halloy J, Deneubourg JL, Mondada F (2018) Designing a socially integrated mobile robot for ethological research. Robot Auton Syst 103:42–55Google Scholar
  71. Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Kotaleski JH (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234Google Scholar
  72. Griparić K, Haus T, Miklić D, Polić M, Bogdan S (2017) A robotic system for researching social integration in honeybees. PLoS ONE 12(8):e0181977Google Scholar
  73. Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134(11):5040–5043Google Scholar
  74. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tâche F et al (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853):1155–1158Google Scholar
  75. Halloy J, Mondada F, Kernbach S, Schmickl T (2013) Towards bio-hybrid systems made of social animals and robots. Biomimetic and biohybrid systems. Springer, Berlin, pp 384–386Google Scholar
  76. Hamann H, Wahby M, Schmickl T, Zahadat P, Hofstadler D, Stoy K, Risi S, Faina A, Veenstra F, Kernbach S, Kuksin I, Kernbach O, Ayres P, Wojtaszek P (2015) Flora robotica-mixed societies of symbiotic robot-plant bio-hybrids. In: 2015 IEEE symposium series on computational intelligence. IEEE, pp 1102–1109Google Scholar
  77. Henderson JV, Nicol CJ, Lines JA, White RP, Wathes CM (2001) Behaviour of domestic ducks exposed to mobile predator stimuli. 1. Flock responses. Br Poult Sci 42(4):433–438Google Scholar
  78. Holzer R, Shimoyama I (1997) Locomotion control of a bio-robotic system via electric stimulation. In: Proceedings of the 1997 IEEE/RSJ international conference on intelligent robots and systems, 1997. IROS’97. IEEE, vol 3, pp 1514–1519Google Scholar
  79. Huai R, Yang J, Wang H, Su X (2009) A new robo-animals navigation method guided by the remote control. In: 2nd international conference on biomedical engineering and informatics, 2009. BMEI’09. IEEE, pp 1–4Google Scholar
  80. Huai RT, Yang JQ, Wang H (2016) The robo-pigeon based on the multiple brain regions synchronization implanted microelectrodes. Bioengineered 7(4):213–218Google Scholar
  81. Huntingford FA (1984) Some ethical issues raised by studies of predation and aggression. Anim Behav 32(1):210–215Google Scholar
  82. Ioannou CC (2017) Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups. Behav Process 141:141–151Google Scholar
  83. Ishii H, Shi Q, Fumino S, Konno S, Kinoshita S, Okabayashi S et al (2013) A novel method to develop an animal model of depression using a small mobile robot. Adv Robot 27(1):61–69Google Scholar
  84. Jacobs JA, Siegford JM (2012) Invited review: the impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J Dairy Sci 95:2227–2247Google Scholar
  85. Jadhav AD, Aimo I, Cohen D, Ledochowitsch P, Maharbiz MM (2012) Cyborg eyes: microfabricated neural interfaces implanted during the development of insect sensory organs produce stable neurorecordings in the adult. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS). IEEE, pp 937–940Google Scholar
  86. Jolly L, Pittet F, Caudal JP, Mouret JB, Houdelier C, Lumineau S, De Margerie E (2016) Animal-to-robot social attachment: initial requisites in a gallinaceous bird. Bioinspir Biomim 11(1):016007Google Scholar
  87. JrJH Long, Schumacher J, Livingston N, Kemp M (2006) Four flippers or two? Tetrapodal swimming with an aquatic robot. Bioinspir Biomim 1(1):20Google Scholar
  88. Katz E (2014) Implantable bioelectronics–editorial introduction. In: Implantable bioelectronics. Wiley, Weinheim.  https://doi.org/10.1002/9783527673148.ch1
  89. Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo–methods, applications and perspectives–feature article. Energy Environ Sci 6(10):2791–2803Google Scholar
  90. Katzschmann RK, DelPreto J, MacCurdy R, Rus D (2018) Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics.  https://doi.org/10.1126/scirobotics.aar3449 Google Scholar
  91. Kawabata K, Aonuma H, Hosoda K, Xue J (2013) Controlled interaction with the cricket based on on-line pose estimation of mobile robot. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp 1347–1352Google Scholar
  92. Kawabata K, Aonuma H, Hosoda K, Sugimoto Y, Xue J (2014) Experimental study on robotic interactions to the cricket. In: 2014 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp. 949–954Google Scholar
  93. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74Google Scholar
  94. Kim CH, Choi B, Kim DG, Lee S, Jo S, Lee PS (2016) Remote navigation of turtle by controlling instinct behaviour via human brain–computer interface. J Bionic Eng 13(3):491–503Google Scholar
  95. Kim C, Ruberto T, Phamduy P, Porfiri M (2018) Closed-loop control of zebrafish behaviour in three dimensions using a robotic stimulus. Sci Rep 8(1):657Google Scholar
  96. King A (2017) The future of agriculture. Nature 544(7651):S21–S23Google Scholar
  97. Kobayashi N, Yoshida M, Matsumoto N, Uematsu K (2009) Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci Lett 452(1):42–46Google Scholar
  98. Kopman V, Laut J, Polverino G, Porfiri M (2013) Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. J R Soc Interface 10(78):20120540Google Scholar
  99. Krause J, Winfield AF, Deneubourg JL (2011) Interactive robots in experimental biology. Trends Ecol Evol 26(7):369–375Google Scholar
  100. Kubinyi E, Miklósi Á, Kaplan F, Gácsi M, Topál J, Csányi V (2004) Social behaviour of dogs encountering AIBO, an animal-like robot in a neutral and in a feeding situation. Behav Process 65(3):231–239Google Scholar
  101. Kuwana Y, Shimoyama I, Miura H (1995) Steering control of a mobile robot using insect antennae. In: 1995 IEEE/RSJ international conference on intelligent robots and systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. IEEE, vol 2, pp 530–535Google Scholar
  102. Kuwana Y, Nagasawa S, Shimoyama I, Kanzaki R (1999) Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens Bioelectron 14(2):195–202Google Scholar
  103. Ladu F, Bartolini T, Panitz SG, Chiarotti F, Butail S, Macrì S, Porfiri M (2015) Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish. Zebrafish 12(3):205–214.  https://doi.org/10.1089/zeb.2014.1041 Google Scholar
  104. Landgraf T, Oertel M, Rhiel D, Rojas R (2010) A biomimetic honeybee robot for the analysis of the honeybee dance communication system. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3097–3102Google Scholar
  105. Landgraf T, Rojas R, Nguyen H, Kriegel F, Stettin K (2011) Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot. PLoS ONE 6(8):e21354Google Scholar
  106. Landgraf T, Oertel M, Kirbach A, Menzel R, Rojas R (2012) Imitation of the honeybee dance communication system by means of a biomimetic robot. In: Conference on biomimetic and biohybrid systems. Springer, Berlin, pp 132–143Google Scholar
  107. Landgraf T, Nguyen H, Forgo S, Schneider J, Schröer J, Krüger C et al (2013) Interactive robotic fish for the analysis of swarm behaviour. In: International conference in swarm intelligence. Springer, Berlin, pp 1–10Google Scholar
  108. Landgraf T, Nguyen H, Schröer J, Szengel A, Clément RJ, Bierbach D, Krause J (2014) Blending in with the shoal: robotic fish swarms for investigating strategies of group formation in guppies. In: Conference on biomimetic and biohybrid systems. Springer International Publishing, pp 178–189Google Scholar
  109. Landgraf T, Bierbach D, Nguyen H, Muggelberg N, Romanczuk P, Krause J (2016) RoboFish: increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live Trinidadian guppies. Bioinspir Biomim 11(1):015001Google Scholar
  110. Laschi C, Mazzolai B, Patanè F, Mattoli V, Dario P, Ishii H et al (2006) Design and development of a legged rat robot for studying animal–robot interaction. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006. BioRob 2006. IEEE, pp 631–636Google Scholar
  111. Latif T, Whitmire E, Novak T, Bozkurt A (2014) Towards fenceless boundaries for solar powered insect biobots. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1670–1673Google Scholar
  112. Latif T, Whitmire E, Novak T, Bozkurt A (2016) Sound localization sensors for search and rescue biobots. IEEE Sens J 16(10):3444–3453Google Scholar
  113. Li G, Zhang D (2016) Brain–computer interface controlled cyborg: establishing a functional information transfer pathway from human brain to cockroach brain. PLoS ONE 11(3):e0150667Google Scholar
  114. Li G, Zhang D (2017) Brain–computer interface controlling cyborg: a functional brain-to-brain interface between human and cockroach. Brain–computer interface research. Springer International Publishing, Cham, pp 71–79Google Scholar
  115. Li Y, Wu J, Sato H (2018) Feedback control-based navigation of a flying insect-machine hybrid robot. Soft Robotics.  https://doi.org/10.1089/soro.2017.0118 Google Scholar
  116. Lin JY, Yu CN, Jia J, Zhang SM, Wang YW, Chen WD, Zheng XX (2010) Using dlPAG-evoked immobile behaviour in animal–robotics navigation. In: 2010 5th international conference on computer science and education (ICCSE). IEEE, pp 1295–1298Google Scholar
  117. Lin HT, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim 6(2):026007Google Scholar
  118. Lockwood JA (1988) Not to harm a fly: our ethical obligations to insects. Between Species 4(3):12Google Scholar
  119. Lorenz K (1935) Der kumpan in der umwelt des vogels. J Ornithol 83(3):289–413. [Translated in K. Lorenz. 1970. Studies in Animal and Human Behaviour. Harvard University Press, Cambridge.]Google Scholar
  120. Macrì S, Neri D, Ruberto T, Mwaffo V, Butail S, Porfiri M (2017) Three-dimensional scoring of zebrafish behaviour unveils biological phenomena hidden by two-dimensional analyses. Sci Rep 7(1):1962Google Scholar
  121. MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6(1):81–86Google Scholar
  122. Manfredi L, Assaf T, Mintchev S, Marrazza S, Capantini L, Orofino S et al (2013) A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion. Biol Cybern 107(5):513–527Google Scholar
  123. Marras S, Porfiri M (2012) Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J R Soc Interface 9(73):1856–1868Google Scholar
  124. Martinez D, Arhidi L, Demondion E, Masson JB, Lucas P (2014) Using insect electroantennogram sensors on autonomous robots for olfactory searches. J Vis Exp 90:e51704Google Scholar
  125. Martins EP, Ord TJ, Davenport SW (2005) Combining motions into complex displays: playbacks with a robotic lizard. Behav Ecol Sociobiol 58(4):351–360Google Scholar
  126. Mehta D, Altan E, Chandak R, Raman B, Chakrabartty S (2017) Behaving cyborg locusts for standoff chemical sensing. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4Google Scholar
  127. Michelsen A, Andersen BB, Storm J, Kirchner WH, Lindauer M (1992) How honeybees perceive communication dances, studied by means of a mechanical model. Behav Ecol Sociobiol 30(3–4):143–150Google Scholar
  128. Mitri S, Wischmann S, Floreano D, Keller L (2013) Using robots to understand social behaviour. Biolo Rev 88(1):31–39Google Scholar
  129. Mondada F, Martinoli A, Correll N, Gribovskiy A, Halloy JI, Siegwart R, Deneubourg JL (2013) A general methodology for the control of mixed natural-artificial societies. Pan Stanford Publishing, Stanford, pp 547–586Google Scholar
  130. Myrick AJ, Baker TC (2010) Locating a compact odor source using a four-channel insect electroantennogram sensor. Bioinspir Biomim 6(1):016002Google Scholar
  131. Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102(7):2425–2429Google Scholar
  132. Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL et al (2016) Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295):158–162Google Scholar
  133. Partan SR, Larco CP, Owens MJ (2009) Wild tree squirrels respond with multisensory enhancement to conspecific robot alarm behaviour. Anim Behav 77(5):1127–1135Google Scholar
  134. Partan SR, Fulmer AG, Gounard MA, Redmond JE (2010) Multimodal alarm behaviour in urban and rural gray squirrels studied by means of observation and a mechanical robot. Curr Zool 56(3):313–326Google Scholar
  135. Partan SR, Otovic P, Price VL, Brown SE (2011) Assessing display variability in wild brown anoles Anolis sagrei using a mechanical lizard model. Curr Zool 57(2):140–152Google Scholar
  136. Pastell M, Takko H, Gröhn H, Hautala M, Poikalainen V, Praks J, Veermäe I, Kujala M, Ahokas J (2006) Assessing cows’ welfare: weighing the cow in a milking robot. Biosyst Eng 93(1):81–87Google Scholar
  137. Patanè F, Mattoli V, Laschi C, Mazzolai B, Dario P, Ishii H, Takanishi A (2007) Biomechatronic design and development of a legged rat robot. In: IEEE international conference on robotics and biomimetics, 2007. ROBIO 2007. IEEE, pp 847–852Google Scholar
  138. Patricelli GL, Krakauer AH (2009) Tactical allocation of effort among multiple signals in sage grouse: an experiment with a robotic female. Behav Ecol 21(1):97–106Google Scholar
  139. Patricelli GL, Uy JAC, Walsh G, Borgia G (2002) Sexual selection: male displays adjusted to female’s response. Nature 415(6869):279–280Google Scholar
  140. Patricelli GL, Coleman SW, Borgia G (2006) Male satin bowerbirds, Ptilonorhynchus violaceus, adjust their display intensity in response to female startling: an experiment with robotic females. Anim Behav 71(1):49–59Google Scholar
  141. Peng Y, Wu Y, Yang Y, Huang R, Wu C, Qi X et al (2011) Study on the control of biological behaviour on carp induced by electrophysiological stimulation in the corpus cerebelli. In: 2011 international conference on electronic and mechanical engineering and information technology (EMEIT). IEEE, vol 1, pp 502–505Google Scholar
  142. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G (2016) Autism and social robotics: a systematic review. Autism Res 9(2):165–183Google Scholar
  143. Pfeifer R, Bongard J (2006) How the body shapes the way we think: a new view of intelligence. MIT press, CambridgeGoogle Scholar
  144. Phamduy P, Polverino G, Fuller RC, Porfiri M (2014) Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs. Bioinspir Biomim 9(3):036021Google Scholar
  145. Polverino G, Porfiri M (2013) Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio. Behav Brain Res 250:133–138Google Scholar
  146. Polverino G, Abaid N, Kopman V, Macrì S, Porfiri M (2012) Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals. Bioinspir Biomim 7(3):036019Google Scholar
  147. Polverino G, Phamduy P, Porfiri M (2013) Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behaviour. PLoS ONE 8(10):e77589Google Scholar
  148. Poon KC, Tan DCL, Li Y, Cao F, Doan TTV, Sato H (2016) Cyborg insect: insect computer hybrid robot. In: Meeting abstracts. Electrochemical Society, vol 44. ECS, p 3221Google Scholar
  149. Rashid MT, Frasca M, Ali AA, Ali RS, Fortuna L, Xibilia MG (2012) Artemia swarm dynamics and path tracking. Nonlinear Dyn 68(4):555–563Google Scholar
  150. Reaney LT, Sims RA, Sims SW, Jennions MD, Backwell PR (2008) Experiments with robots explain synchronized courtship in fiddler crabs. Curr Biol 18(2):R62–R63Google Scholar
  151. Romano D, Benelli G, Donati E, Remorini D, Canale A, Stefanini C (2017a) Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes. Sci Rep.  https://doi.org/10.1038/s41598-017-04840-0 Google Scholar
  152. Romano D, Benelli G, Stefanini C (2017b) Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator. Sci Rep.  https://doi.org/10.1038/s41598-017-12941-z Google Scholar
  153. Romano D, Stefanini C, Canale A, Benelli G (2018) Artificial blood feeders for mosquito and ticks—Where from, where to? Acta Trop 183:43–56Google Scholar
  154. Ruberto T, Mwaffo V, Singh S, Neri D, Porfiri M (2016) Zebrafish response to a robotic replica in three dimensions. R Soc Open Sci 3(10):160505Google Scholar
  155. Ruberto T, Polverino G, Porfiri M (2017) How different is a 3D-printed replica from a conspecific in the eyes of a zebrafish? J Exp Anal Behav 107(2):279–293Google Scholar
  156. Ruhland K, Peters CE, Andrist S, Badler JB, Badler NI, Gleicher M, Mutlu B, McDonnell R (2015) A review of eye gaze in virtual agents, social robotics and hci: behaviour generation, user interaction and perception. In: Computer graphics forum, vol 34, No. 6. Wiley, pp 299–326Google Scholar
  157. Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci 104(36):14372–14376Google Scholar
  158. Sanchez CJ, Chiu CW, Zhou Y, González JM, Vinson SB, Liang H (2015) Locomotion control of hybrid cockroach robots. J R Soc Interface 12(105):20141363Google Scholar
  159. Sato H, Maharbiz MM (2010) Recent developments in the remote radio control of insect flight. Front Neurosci 4:199Google Scholar
  160. Sato H, Berry CW, Casey BE, Lavella G, Yao Y, VandenBrooks JM, Maharbiz MM (2008) A cyborg beetle: insect flight control through an implantable, tetherless microsystem. In: IEEE 21st international conference on micro electro mechanical systems, 2008. MEMS 2008. IEEE, pp 164–167Google Scholar
  161. Sato H, Berry CW, Peeri Y, Baghoomian E, Casey BE, Lavella G et al (2009) Remote radio control of insect flight. Front Integr Neurosci 3:24Google Scholar
  162. Sato H, Doan TTV, Kolev S, Huynh NA, Zhang C, Massey TL et al (2015) Deciphering the role of a coleopteran steering muscle via free flight stimulation. Curr Biol 25(6):798–803Google Scholar
  163. Savard JF, Keagy J, Borgia G (2011) Blue, not UV, plumage color is important in satin bowerbird Ptilonorhynchus violaceus display. J Avian Biol 42(1):80–84Google Scholar
  164. Schmickl T, Thenius R, Moslinger C, Timmis J, Tyrrell A, Read M, Hilder J, Halloy J, Campo A, Stefanini C, Manfredi L, Orofino S, Kernbach S, Dipper T, Sutantyo D (2011) CoCoRo–the self-aware underwater swarm. In: 2011 fifth IEEE conference on self-adaptive and self-organizing systems workshops (SASOW). IEEE, pp 120–126Google Scholar
  165. Schwefel J, Ritzmann RE, Lee IN, Pollack A, Weeman W, Garverick S et al (2015) Wireless communication by an autonomous self-powered cyborg insect. J Electrochem Soc 161(13):H3113–H3116Google Scholar
  166. Seo J, Choi GJ, Park S, Lee J, Baek C, Jang J et al (2017) Wireless navigation of pigeons using polymer-based fully implantable stimulator: a pilot study using depth electrodes. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 917–920Google Scholar
  167. Sherman PW, Lacey EA, Reeve HK, Keller L (1995) Forum the eusociality continuum. Behav Ecol 6(1):102–108Google Scholar
  168. Shi Q, Miyagishima S, Konno S, Fumino S, Ishii H, Takanishii A et al (2010) Development of the hybrid wheel-legged mobile robot WR-3 designed to interact with rats. In: 2010 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 887–892Google Scholar
  169. Shi Q, Ishii H, Kinoshita S, Takanishi A, Okabayashi S, Iida N et al (2013) Modulation of rat behaviour by using a rat-like robot. Bioinspir Biomim 8(4):046002Google Scholar
  170. Shi Q, Ishii H, Tanaka K, Sugahara Y, Takanishi A, Okabayashi S et al (2015) Behaviour modulation of rats to a robotic rat in multi-rat interaction. Bioinspir Biomim 10(5):056011Google Scholar
  171. Shoji K, Morishima K, Akiyama Y, Nakamura N, Ohno H (2016) Autonomous environmental monitoring by self-powered biohybrid robot. In: 2016 IEEE international conference on mechatronics and automation (ICMA). IEEE, pp 629–634Google Scholar
  172. Spinello C, Macrì S, Porfiri M (2013) Acute ethanol administration affects zebrafish preference for a biologically inspired robot. Alcohol 47(5):391–398Google Scholar
  173. Stefanini C, Orofino S, Manfredi L, Mintchev S, Marrazza S, Assaf T et al (2012) A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir Biomim 7(2):025001Google Scholar
  174. Stojnić A (2017) Only cyborgs and cockroaches. Perform Res 22(2):123–128Google Scholar
  175. Stowers JR, Hofbauer M, Bastien R, Griessner J, Higgins P, Farooqui S, Fischer RM, Nowikovsky K, Haubensak W, Couzin ID, Tessmar-Raible K, Straw AD (2017) Virtual reality for freely moving animals. Nat Methods 14(10):995Google Scholar
  176. Swain DT, Couzin ID, Leonard NE (2012) Real-time feedback-controlled robotic fish for behavioural experiments with fish schools. Proc IEEE 100(1):150–163Google Scholar
  177. Takanishi A, Aoki T, Ito M, Ohkawa Y, Yamaguchi JI (1998) Interaction between creature and robot: development of an experiment system for rat and rat robot interaction. In: 1998 IEEE/RSJ international conference on intelligent robots and systems, 1998. Proceedings. IEEE, vol 3, pp 1975–1980Google Scholar
  178. Talwar SK, Xu S, Hawley ES, Weiss SA, Moxon KA, Chapin JK (2002) Behavioural neuroscience: rat navigation guided by remote control. Nature 417(6884):37–38Google Scholar
  179. Taylor RC, Klein BA, Stein J, Ryan MJ (2008) Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Anim Behav 76(3):1089–1097Google Scholar
  180. Tinbergen N (1948) Social releasers and the experimental method required for their study. Wilson Bull 60:6–51Google Scholar
  181. Tsang WM, Aldworth Z, Stone A, Permar A, Levine R, Hildebrand et al (2008) Insect flight control by neural stimulation of pupae-implanted flexible multisite electrodes. In: The proceeding of µ TAS, pp 1922–1924Google Scholar
  182. Tye M (2016) Are insects sentient? Animal sentience: an interdisciplinary. J Anim Feel 1(9):5Google Scholar
  183. Uematsu K, Todo T (1997) Identification of the midbrain locomotor nuclei and their descending pathways in the teleost carp, Cyprinus carpio. Brain Res 773(1):1–7Google Scholar
  184. Vaughan R, Sumpter N, Henderson J, Frost A, Cameron S (2000) Experiments in automatic flock control. Robot Auton Syst 31(1):109–117Google Scholar
  185. Wang H, Huai RT, Yang JQ, Su XC (2013) Review of research progress in biorobot. In: Advanced materials research. Trans Tech Publications, vol 655. Springer, pp 1061–1065Google Scholar
  186. Wang Y, Lu M, Wu Z, Tian L, Xu K, Zheng X, Pan G (2015) Visual cue-guided rat cyborg for automatic navigation [research frontier]. IEEE Comput Intell Mag 10(2):42–52Google Scholar
  187. Wang S, Shen L, Liu X, Liao H (2016) A wearable backpack chip for honeybee biorobot. In: Semiconductor technology international conference (CSTIC), 2016 China. IEEE, pp 1–3Google Scholar
  188. Wang Y, Lu M, Wu Z, Zheng X, Pan G (2017) Visual cue-guided rat cyborg. In: Brain–computer interface research. Springer, Cham, pp 65–78Google Scholar
  189. Wang H, Yang J, Lv C, Huai R, Li Y (2018) Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Brill.  https://doi.org/10.1163/15707563-17000053 Google Scholar
  190. Ward AJ, Sumpter DJ, Couzin ID, Hart PJ, Krause J (2008) Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci 105(19):6948–6953Google Scholar
  191. Webb B (2000) What does robotics offer animal behaviour? Anim Behav 60(5):545–558Google Scholar
  192. Wenbo W, Ce G, Jiurong S, Zhendong D (2009) Locomotion elicited by electrical stimulation in the midbrain of the lizard gekko gecko. Intelligent unmanned systems: theory and applications. Springer, Berlin, pp 145–153Google Scholar
  193. Worm M, Landgraf T, Nguyen H, von der Emde G (2014) Electro-communicating dummy fish initiate group behaviour in the weakly electric fish Mormyrus rume. In: Duff A, Lepora NF, Mura A, Prescott TJ, Verschure PFMJ (eds) Biomimetic and biohybrid systems LNAI, vol 8608, pp 446–448Google Scholar
  194. Worm M, Landgraf T, Prume J, Nguyen H, Kirschbaum F, von der Emde G (2018) Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc Natl Acad Sci 24:245.  https://doi.org/10.1073/pnas.1801283115 Google Scholar
  195. Wu Z, Pan G, Zheng N (2013) Cyborg intelligence. IEEE Intell Syst 28(5):31–33Google Scholar
  196. Wu Z, Yang Y, Xia B, Zhang Z, Pan G (2014) Speech interaction with a rat. Chin Sci Bull 59(28):3579–3584Google Scholar
  197. Wu Z, Zhou Y, Shi Z, Zhang C, Li G, Zheng X, Zheng N, Pan G (2016) Cyborg intelligence: recent progress and future directions. IEEE Intell Syst 31(6):44–50Google Scholar
  198. Xu S, Talwar SK et al (2004) A multi-channel telemetry system for brain microstimulation in freely roaming animals. J Neurosci Methods 133(1–2):57–63Google Scholar
  199. Xu K, Zhang J, Zhou H, Lee JCT, Zheng X (2016) A novel turning behaviour control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus. Behav Brain Res 298:150–157Google Scholar
  200. Yang J, Huai R, Wang H, Lv C, Su X (2015) A robo-pigeon based on an innovative multi-mode telestimulation system. Biomed Mater Eng 26(s1):357–363Google Scholar
  201. Yu Y, Pan G, Gong Y, Xu K, Zheng N, Hua W et al (2016a) Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11(2):e0147754Google Scholar
  202. Yu Y, Wu Z, Xu K, Gong Y, Zheng N, Zheng X, Pan G (2016b) Automatic training of rat cyborgs for navigation. Comput Intell Neurosci.  https://doi.org/10.1155/2016/6459251 Google Scholar
  203. Zahadat P, Hahshold S, Thenius R, Crailsheim K, Schmickl T (2015) From honeybees to robots and back: division of labour based on partitioning social inhibition. Bioinspir Biomim 10(6):066005Google Scholar
  204. Zhang C, Cao F, Li Y, Sato H (2016) Fuzzy-controlled living insect legged actuator. Sens Actuators A Phys 242:182–194Google Scholar
  205. Zheng N, Jin M, Hong H, Huang L, Gu Z, Li H (2017) Real-time and precise insect flight control system based on virtual reality. Electron Lett 53(6):387–389Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The BioRobotics InstituteSant’Anna School of Advanced StudiesPontederaItaly
  2. 2.The Institute of NeuroinformaticsUniversity of Zurich/ETHZurichSwitzerland
  3. 3.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  4. 4.HEIC Center, BME DepartmentKhalifa UniversityAbu DhabiUAE

Personalised recommendations