Advertisement

Biological Cybernetics

, Volume 113, Issue 1–2, pp 71–82 | Cite as

Cellular switches orchestrate rhythmic circuits

  • Guillaume DrionEmail author
  • Alessio Franci
  • Rodolphe Sepulchre
Original Article

Abstract

Small inhibitory neuronal circuits have long been identified as key neuronal motifs to generate and modulate the coexisting rhythms of various motor functions. Our paper highlights the role of a cellular switching mechanism to orchestrate such circuits. The cellular switch makes the circuits reconfigurable, robust, adaptable, and externally controllable. Without this cellular mechanism, the circuit rhythms entirely rely on specific tunings of the synaptic connectivity, which makes them rigid, fragile, and difficult to control externally. We illustrate those properties on the much studied architecture of a small network controlling both the pyloric and gastric rhythms of crabs. The cellular switch is provided by a slow negative conductance often neglected in mathematical modeling of central pattern generators. We propose that this conductance is simple to model and key to computational studies of rhythmic circuit neuromodulation.

Keywords

Central pattern generators Neuromodulation Mathematical modeling 

References

  1. Ashby R (1952) Design for a brain: the origin of adaptive behavior. Wiley, OxfordGoogle Scholar
  2. Bargmann C, Marder E (2013) From the connectome to brain function. Nat Methods 10(6):483–490CrossRefGoogle Scholar
  3. Berkowitz A, Roberts A, Soffe S (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36Google Scholar
  4. Bucher D, Taylor AL, Marder E (2006) Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. J Neurophysiol 95(6):3617–3632CrossRefGoogle Scholar
  5. Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-bötzinger complex. ii. Populations of coupled pacemaker neurons. J Neurophysiol 82(1):398–415CrossRefGoogle Scholar
  6. Dai Y, Jordan L (2010) Multiple patterns and components of persistent inward current with serotonergic modulation in locomotor activity-related neurons in Cfos-EGFP mice. J Neurophysiol 103(4):1712–1727CrossRefGoogle Scholar
  7. Daur N, Nadim F, Bucher D (2016) The complexity of small circuits: the stomatogastric nervous system. Curr Opin Neurobiol 41:1–7CrossRefGoogle Scholar
  8. Dethier J, Drion G, Franci A, Sepulchre R (2015) A positive feedback at the cellular level promotes robustness and modulation at the circuit level. J Neurophysiol 114:2472–2484CrossRefGoogle Scholar
  9. Dickinson P, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor-pattern generator circuits. Nature 344(6262):155CrossRefGoogle Scholar
  10. Drion G, Franci A, Seutin V, Sepulchre R (2012) A novel phase portrait for neuronal excitability. PLoS ONE 7(8):e41,806CrossRefGoogle Scholar
  11. Drion G, Franci A, Dethier J, Sepulchre R (2015) Dynamic input conductances shape neuronal spiking. eNeuro.  https://doi.org/10.1523/ENEURO.0031-14.2015
  12. Drion G, Dethier J, Franci A, Sepulchre R (2018) Switchable slow cellular conductances determine robustness and tunability of network states. PLOS Comput Biol 14(4):e1006125CrossRefGoogle Scholar
  13. Ekman M, Derrfuss J, Tittgemeyer M, Fiebach C (2012) Predicting errors from reconfiguration patterns in human brain networks. Proc Natl Acad Sci USA 109(41):16,714–16,719CrossRefGoogle Scholar
  14. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445CrossRefGoogle Scholar
  15. Franci A, Drion G, Sepulchre R (2012) An organizing center in a planar model of neuronal excitability. SIAM J Appl Dyn Syst 11(4):1698–1722CrossRefGoogle Scholar
  16. Franci A, Drion G, Seutin V, Sepulchre R (2013) A balance equation determines a switch in neuronal excitability. PLoS Comput Biol 9(5):e1003,040CrossRefGoogle Scholar
  17. Franci A, Drion G, Sepulchre R (2014) Modeling the modulation of neuronal bursting: a singularity theory approach. SIAM J Appl Dyn Syst 13(2):798–829CrossRefGoogle Scholar
  18. Franci A, Drion G, Sepulchre R (2018) Robust and tunable bursting requires slow positive feedback. J Neurophysiol 119(3):1222–1234. arXiv:1707.00664
  19. Francis N, Winkowski D, Sheikhattar A, Armengol K, Babadi B, Kanold P (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897CrossRefGoogle Scholar
  20. Gerstner W, Kistler W, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21(14):5229–5238CrossRefGoogle Scholar
  22. Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78(3):1199–1211CrossRefGoogle Scholar
  23. Gordon I, Whelan P (2006) Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 96(6):3122–3129CrossRefGoogle Scholar
  24. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4(7):573–586CrossRefGoogle Scholar
  25. Gutierrez G, O’Leary T, Marder EE (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77(5):845–858CrossRefGoogle Scholar
  26. Haider B, McCormick D (2009) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189CrossRefGoogle Scholar
  27. Harris-Warrick R (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21(5):685–692CrossRefGoogle Scholar
  28. Harris-Warrick R, Cohen A (1985) Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol 116(1):27–46Google Scholar
  29. Hill A, Hooser SV, Calabrese R (2003) Half-center oscillators underlying rhythmic movements. MIT Press, Cambridge, pp 507–510Google Scholar
  30. Honey C, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10,240–10,245CrossRefGoogle Scholar
  31. Ijspeert A (2014) Biorobotics: Using robots to emulate and investigate agile locomotion. Science 346(6206):196–203CrossRefGoogle Scholar
  32. Ijspeert A, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817):1416–1420CrossRefGoogle Scholar
  33. Jordan L, Slawinska U (2011) Modulation of rhythmic movement: control of coordination, progress in brain research, vol 188. Elsevier, Amsterdam, pp 181–195Google Scholar
  34. Liu Z, Golowasch J, Marder E, Abbott L (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18(7):2309–2320CrossRefGoogle Scholar
  35. Liu J, Akay T, Hedlund P, Pearson K, Jordan L (2009) Spinal 5-ht7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-ht7 receptor knockout mice. J Neurophysiol 102(1):337–348CrossRefGoogle Scholar
  36. Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11CrossRefGoogle Scholar
  37. Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):R986–R996CrossRefGoogle Scholar
  38. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316Google Scholar
  39. Marder E, O’Leary T, Shruti S (2014) Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37:329–347CrossRefGoogle Scholar
  40. Marder E, Goeritz M, Otopalik A (2015) Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr Opin Neurobiol 31:156–163CrossRefGoogle Scholar
  41. McLean D, Masino M, Koh I, Lindquist W, Fetcho J (2008) Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat Neurosci 11(12):1419–1429CrossRefGoogle Scholar
  42. Mennes M, Kelly C, Colcombe S, Castellanos F, Milham M (2012) The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cereb Cortex 23(1):223–229CrossRefGoogle Scholar
  43. Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating circuit with neurons of different networks. Nature 351(6321):60CrossRefGoogle Scholar
  44. Pottelbergh TV, Drion G, Sepulchre R (2018) Robust modulation of integrate-and-fire models. Neural Comput 30(4):987–1011CrossRefGoogle Scholar
  45. Prinz A, Billimoria C, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90(6):3998–4015CrossRefGoogle Scholar
  46. Rodriguez J, Blitz D, Nusbaum M (2013) Convergent rhythm generation from divergent cellular mechanisms. J Neurosci 33(46):18,047–18,064CrossRefGoogle Scholar
  47. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–35CrossRefGoogle Scholar
  48. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963–76CrossRefGoogle Scholar
  49. Weimann J, Marder E (1994) Switching neurons are integral members of multiple oscillatory networks. Curr Biol 4(10):896–902CrossRefGoogle Scholar
  50. White R, Nusbaum M (2011) The same core rhythm generator underlies different rhythmic motor patterns. J Neurosci 31(32):11,484–11,494CrossRefGoogle Scholar
  51. Zhong G, Sharma K, Harris-Warrick R (2011) Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat Commun 2:274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of LiegeLiegeBelgium
  2. 2.Department of Mathematics, Science FacultyNational Autonomous University of MexicoCoyoacánMéxico
  3. 3.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations