Advertisement

Biological Cybernetics

, Volume 112, Issue 6, pp 509–522 | Cite as

The self-organization of ball bouncing

  • Guillaume Avrin
  • Isabelle A. Siegler
  • Maria Makarov
  • Pedro Rodriguez-Ayerbe
Original Article
  • 42 Downloads

Abstract

The hybrid rhythmic ball-bouncing task considered in this study requires a participant to hit a ball in a virtual environment by moving a paddle in the real environment. It allows for investigation of the online visual control of action in humans. Changes in gravity acceleration in the virtual environment affect the ball dynamics and modify the ball-paddle system limit cycle. These changes are shown to be accurately reproduced through simulation by a model integrating continuous information–movement couplings between the ball trajectory and the paddle trajectory, giving rise to a resonance-tuning phenomenon. On the contrary, the tested models integrating only intermittent sensorimotor couplings were unable to replicate the observed human behavior. Results suggest that the visual control of action is achieved online, in a prospective way. Human rhythmic motor control would benefit from the timing and phase control emerging from the low-level continuous coupling between the central pattern generator and the visual perception of the ball trajectory. This control strategy, which precludes the need for internal clock and explicit environmental representation, is also able to explain the empirical result that the bounces tend to converge toward a passive stability regime during human ball bouncing.

Keywords

Ball bouncing Information–movement couplings Neural oscillators Dynamic systems Resonance tuning 

Supplementary material

422_2018_776_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (pdf 3074 KB)

References

  1. Ankarali MM, Tutkun Şen H, De A, Okamura AM, Cowan NJ (2014) Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate. J Neurophysiol 111(6):1286–1299CrossRefGoogle Scholar
  2. Arsenio AM (2000) Neural oscillator networks for rhythmic control of animats. Anim Animat 6:105–114Google Scholar
  3. Avrin G, Makarov M, Rodriguez-Ayerbe P, Siegler IA (2016) Particle swarm optimization of Matsuoka’s oscillator parameters in human-like control of rhythmic movements. In: Proceedings on IEEE American control conference, pp 342–347Google Scholar
  4. Avrin G, Makarov M, Rodriguez-Ayerbe P, Siegler IA (2017a) Dynamic stability of repeated agent-environment interactions during the hybrid ball-bouncing task. In: Proceedings of international conference informatics in control, automation and robotics, pp 486–496Google Scholar
  5. Avrin G, Siegler IA, Makarov M, Rodriguez-Ayerbe P (2017b) Model of rhythmic ball bouncing using a visually controlled neural oscillator. J Neurophysiol 118(4):2470–2482CrossRefGoogle Scholar
  6. Bazile C, Siegler IA, Benguigui N (2013) Major changes in a rhythmic ball-bouncing task occur at age 7 years. PLoS ONE 8(10):e74,127CrossRefGoogle Scholar
  7. Bazile C, Benguigui N, Siegler IA (2016) Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information. Exp Brain Res 234(1):173–183CrossRefGoogle Scholar
  8. Beer RD (1998) Framing the debate between computational and dynamical approaches to cognitive science. Behav Brain Sci 21(05):630–630CrossRefGoogle Scholar
  9. Benguigui N, Ripoll H, Broderick MP (2003) Time-to-contact estimation of accelerated stimuli is based on first-order information. J Exp Psychol Hum Percept Perform 29(6):1083CrossRefGoogle Scholar
  10. Bertenthal BI, Rose JL, Bai DL (1997) Perception-action coupling in the development of visual control of posture. J Exp Psychol Hum Percept Perform 23:1631–1643CrossRefGoogle Scholar
  11. Bootsma RJ, Van Wieringen PC (1990) Timing an attacking forehand drive in table tennis. J Exp Psychol Hum Percept Perform 16(1):21CrossRefGoogle Scholar
  12. Buekers MJ, Bogaerts HP, Swinnen SP, Helsen WF (2000) The synchronization of human arm movements to external events. Neurosci Lett 290(3):181–184CrossRefGoogle Scholar
  13. Collins S, Ruina A, Tedrake R, Wisse M (1998) Complex-systems perspective on the “computation vs. dynamics” debate in cognitive science. In: Proceeding conference of the cognitive science society, pp 710–715Google Scholar
  14. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–1085CrossRefGoogle Scholar
  15. Dessing JC, Peper CLE, Bullock D, Beek PJ (2005) How position, velocity, and temporal information combine in the prospective control of catching: data and model. J Cognit Neurosci 17(4):668–686CrossRefGoogle Scholar
  16. Dietz V, Duysens J (2000) Significance of load receptor input during locomotion: a review. Gait Posture 11(2):102–110CrossRefGoogle Scholar
  17. Dijkstra T, Schöner G, Gielen C (1994a) Temporal stability of the action-perception cycle for postural control in a moving visual environment. Exp Brain Res 97(3):477–486CrossRefGoogle Scholar
  18. Dijkstra T, Schöner G, Giese MA, Gielen C (1994b) Frequency dependence of the action-perception cycle for postural control in a moving visual environment: relative phase dynamics. Biol Cybern 71(6):489–501CrossRefGoogle Scholar
  19. Gan L, Huang Y, Zhou L, Qian C, Wu X (2015) Synchronization to a bouncing ball with a realistic motion trajectory. Sci Rep 5(11):974Google Scholar
  20. Gibson JJ (2014) The ecological approach to visual perception, classic edn. Psychology Press, New YorkCrossRefGoogle Scholar
  21. Goldfield EC, Kay BA, Warren WH (1993) Infant bouncing: the assembly and tuning of action systems. Child Dev 64(4):1128–1142CrossRefGoogle Scholar
  22. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5):751–766CrossRefGoogle Scholar
  23. Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21(5):685–692 networks, circuits and computationCrossRefGoogle Scholar
  24. Hatsopoulos NG, Warren WH Jr (1996) Resonance tuning in rhythmic arm movements. J Mot Behav 28(1):3–14CrossRefGoogle Scholar
  25. Hove MJ, Iversen JR, Zhang A, Repp BH (2013) Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome. Psychol Res 77(4):388–398CrossRefGoogle Scholar
  26. Iversen JR, Patel AD, Nicodemus B, Emmorey K (2015) Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition 134:232–244CrossRefGoogle Scholar
  27. Katsumata H, Russell DM (2012) Prospective versus predictive control in timing of hitting a falling ball. Exp Brain Res 216(4):499–514CrossRefGoogle Scholar
  28. Lee D, Young D, Reddish P, Lough S, Clayton T (1983) Visual timing in hitting an accelerating ball. Q J Exp Psychol 35(2):333–346CrossRefGoogle Scholar
  29. Lee D, Port NL, Georgopoulos AP (1997) Manual interception of moving targets ii. on-line control of overlapping submovements. Exp Brain Res 116(3):421–433CrossRefGoogle Scholar
  30. Lopresti-Goodman SM, Richardson MJ, Silva PL, Schmidt R (2008) Period basin of entrainment for unintentional visual coordination. J Mot Behav 40(1):3–10CrossRefGoogle Scholar
  31. Manoonpong P, Pasemann F, Wörgötter F (2008) Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot Auton Syst 56(3):265–288CrossRefGoogle Scholar
  32. Marchal-Crespo L, Bannwart M, Riener R, Vallery H (2015) The effect of haptic guidance on learning a hybrid rhythmic-discrete motor task. IEEE Trans Haptics 8(2):222–234CrossRefGoogle Scholar
  33. Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52(6):367–376CrossRefGoogle Scholar
  34. Matsuoka K (2011) Analysis of a neural oscillator. Biol Cybern 104(4–5):297–304CrossRefGoogle Scholar
  35. Matsuoka K (2013) Frequency responses of a neural oscillator. [Blog post]. https://matsuoka1.jimdo.com/, Accessed: 2017-03-06
  36. McGeer T (1990) Passive dynamic walking. I. J Robot Res 9(2):62–82CrossRefGoogle Scholar
  37. Montagne G, Laurent M, Durey A, Bootsma R (1999) Movement reversals in ball catching. Exp Brain Res 129(1):87–92CrossRefGoogle Scholar
  38. Morice A, Siegler IA, Bardy B, Warren W (2007) Action-perception patterns in virtual ball bouncing: combating system latency and tracking functional validity. Exp Brain Res 181:249–265CrossRefGoogle Scholar
  39. Oullier O, De Guzman GC, Jantzen KJ, Lagarde J, Scott Kelso J (2008) Social coordination dynamics: measuring human bonding. Soc Neurosci 3(2):178–192CrossRefGoogle Scholar
  40. Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129CrossRefGoogle Scholar
  41. Pelah A, Barbur J, Thurrell A, Hock HS (2015) The coupling of vision with locomotion in cortical blindness. Vis Res 110:286–294CrossRefGoogle Scholar
  42. Rabinovich MI, Varona P, Selverston AI, Abarbanel HD (2006) Dynamical principles in neuroscience. Rev Mod Phys 78(4):1213CrossRefGoogle Scholar
  43. Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992CrossRefGoogle Scholar
  44. Ripoll H, Latiri I (1997) Effect of expertise on coincident-timing accuracy in a fast ball game. J Sports Sci 15(6):573–580CrossRefGoogle Scholar
  45. Roennau A, Heppner G, Nowicki M, Zöllner JM, Dillmann R (2014) Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles. In: Proceeding of IEEE international conference on intelligent robots and systems, IEEE, pp 4888–4894Google Scholar
  46. Ronsse R, Sternad D (2010) Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics. J Mot Behav 42(6):389–399CrossRefGoogle Scholar
  47. Ronsse R, Wei K, Sternad D (2010) Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited. J Neurophysiol 103(5):2482–2493CrossRefGoogle Scholar
  48. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154CrossRefGoogle Scholar
  49. de Rugy A, Wei K, Müller H, Sternad D (2003) Actively tracking ‘passive’ stability in a ball bouncing task. Brain Res 982(1):64–78CrossRefGoogle Scholar
  50. Russell DM, Sternad D (2001) Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations? J Mot Behav 33(4):329–349CrossRefGoogle Scholar
  51. Schaal S (2006) Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. Adaptive motion of animals and machines. Springer, Tokyo, pp 261–280CrossRefGoogle Scholar
  52. Schaal S, Sternad D, Atkeson CG (1996) One-handed juggling: a dynamical approach to a rhythmic movement task. J Mot Behav 28(2):165–183CrossRefGoogle Scholar
  53. Schmidt R, Turvey MT (1994) Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 70(4):369–376CrossRefGoogle Scholar
  54. Schmidt R, Bienvenu M, Fitzpatrick P, Amazeen P (1998) A comparison of intra-and interpersonal interlimb coordination: coordination breakdowns and coupling strength. J Exp Psychol Hum Percept Perform 24(3):884CrossRefGoogle Scholar
  55. Schmidt R, Richardson MJ, Arsenault C, Galantucci B (2007) Visual tracking and entrainment to an environmental rhythm. J Exp Psychol Hum Percept Perform 33(4):860CrossRefGoogle Scholar
  56. Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16(2):227CrossRefGoogle Scholar
  57. Siegler IA, Bardy BG, Warren WH (2010) Passive vs. active control of rhythmic ball bouncing: the role of visual information. J Exp Psychol Hum Percept Perform 36(3):729–50CrossRefGoogle Scholar
  58. Siegler IA, Bazile C, Warren W (2013) Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing. Exp Brain Res 226(4):603–615CrossRefGoogle Scholar
  59. Sternad D, Duarte M, Katsumata H, Schaal S (2001) Bouncing a ball: tuning into dynamic stability. J Exp Psychol Hum Percept Perform 27(5):1163CrossRefGoogle Scholar
  60. Sylos-Labini F, Ivanenko YP, Cappellini G, Portone A, MacLellan MJ, Lacquaniti F (2013) Changes of gait kinematics in different simulators of reduced gravity. J Mot Behav 45(6):495–505CrossRefGoogle Scholar
  61. Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. Biol Cybern 73(2):97–111CrossRefGoogle Scholar
  62. Torre K, Balasubramaniam R (2009) Two different processes for sensorimotor synchronization in continuous and discontinuous rhythmic movements. Exp Brain Res 199(2):157–166CrossRefGoogle Scholar
  63. Tufillaro N, Mello T, Choi Y, Albano A (1986) Period doubling boundaries of a bouncing ball. J Phys 47(9):1477–1482CrossRefGoogle Scholar
  64. Van Der Steen MC, Keller PE (2013) The adaptation and anticipation model (adam) of sensorimotor synchronization. Front Hum Neurosci 7:253PubMedPubMedCentralGoogle Scholar
  65. Varlet M, Coey CA, Schmidt R, Richardson MJ (2012) Influence of stimulus amplitude on unintended visuomotor entrainment. Hum Mov Sci 31(3):541–552CrossRefGoogle Scholar
  66. Varlet M, Coey CA, Schmidt R, Marin L, Bardy BG, Richardson MJ (2014) Influence of stimulus velocity profile on rhythmic visuomotor coordination. J Exp Psychol Hum Percept Perform 40(5):1849CrossRefGoogle Scholar
  67. Warren WH (1988) Action modes and laws of control for the visual guidance of action. Adv Psychol 50:339–379CrossRefGoogle Scholar
  68. Warren WH (2006) The dynamics of perception and action. Psychol Rev 113:358–389CrossRefGoogle Scholar
  69. Washburn A, Coey CA, Romero V, Richardson MJ (2014) Visual multifrequency entrainment: can 1: 2, 2: 3, and 3: 4 coordination occur spontaneously? J Mot Behav 46(4):247–257CrossRefGoogle Scholar
  70. Wei K, Dijkstra T, Sternad D (2007) Passive stabiliy and variability: indicators for passive stability and active control in a rhythmic task. J Neurophysiol 98:2633–2646CrossRefGoogle Scholar
  71. Wei K, Dijkstra TMH, Sternad D (2008) Stability and variability: indicators for passive stability and active control in a rhythmic task. J Neurophysiol 99(6):3027–3041CrossRefGoogle Scholar
  72. White O, Bleyenheuft Y, Ronsse R, Smith AM, Thonnard JL, Lefevre P (2008) Altered gravity highlights central pattern generator mechanisms. J Neurophysiol 100(5):2819–2824CrossRefGoogle Scholar
  73. Williamson M (1998) Neural control of rhythmic arm movements. Neural Netw 11:1379–1394CrossRefGoogle Scholar
  74. Williamson M (1999) Designing rhythmic motions using neural oscillators. Proc IEEE/RSJ Int Conf on Intell Robots Syst(IROS) 1:494–500Google Scholar
  75. Wimmers RH, Beek PJ, van Wieringen PC (1992) Phase transitions in rhythmic tracking movements: a case of unilateral coupling. Hum Mov Sci 11(1):217–226CrossRefGoogle Scholar
  76. Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217CrossRefGoogle Scholar
  77. Yagoubi M, Sandou G (2011) Particle Swarm Optimization for the design of H\(\infty \) static output feedbacks. In: Proceedings of IFAC world congressGoogle Scholar
  78. Zhang D, Zhu X, Poignet P (2009) Coupling of central and peripheral mechanism on tremor. In: Proceedings of IEEE/EMBS international conference on neural engineering, pp 649–652Google Scholar
  79. Zhao H, Warren WH (2015) On-line and model-based approaches to the visual control of action. Vis Res 110:190–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guillaume Avrin
    • 1
    • 2
    • 3
  • Isabelle A. Siegler
    • 2
    • 3
  • Maria Makarov
    • 1
  • Pedro Rodriguez-Ayerbe
    • 1
  1. 1.Laboratoire des Signaux et Systèmes (L2S)CentraleSupélec- CNRS- Univ. Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.CIAMS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  3. 3.CIAMS, Université d’OrléansOrléansFrance

Personalised recommendations