Biological Cybernetics

, Volume 113, Issue 1–2, pp 191–199 | Cite as

Optimizing stimulus waveforms for electroceuticals

  • Joshua ChangEmail author
  • David Paydarfar


There has been a growing interest in the use of electrical stimulation as a therapy across diverse medical conditions. Most electroceutical devices use simple waveforms, for example sinusoidal or rectangular biphasic pulses. Clinicians empirically tune the waveform parameters (e.g. amplitude, frequency) without altering the fundamental shape of the stimulus. In this article, we review computational strategies that have been used to optimize the shape of stimulus waveforms in order to improve clinical outcomes, and we discuss potential directions for future exploration.


Electrical stimulation Bioelectronic medicine Calculus of variations Stochastic search Optimization algorithms 



This work was supported by the Clayton Foundation for Research and NIH R01 GM104987.


  1. Barto AG, Sutton RS (2017) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  2. Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, PrincetonGoogle Scholar
  3. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81Google Scholar
  4. Bloch-Salisbury E, Indic P, Bednarek F, Paydarfar D (2009) Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol 107(4):1017–27Google Scholar
  5. Bonaz BL, Bernstein CN (2013) Brain–gut interactions in inflammatory bowel disease. Gastroenterology 144(1):36–49Google Scholar
  6. Boon P, Vonck K, De Herdt V, Van Dycke A, Goethals M, Goossens L, Van Zandijcke MV, De Smedt T, Dewaele I, Achten R, Wadman W, Dewaele F, Caemaert J, Van Roost D (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48(8):1551–1560Google Scholar
  7. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation and control. CRC Press, Boca RatonGoogle Scholar
  8. Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg Spine 100(3):254–267Google Scholar
  9. Cassar IR, Titus ND, Grill WM (2017) An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J Neural Eng 14(6):066013Google Scholar
  10. Chang J, Paydarfar D (2014) Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm. J Comput Neurosci 37(3):569–582Google Scholar
  11. Chang J, Paydarfar D (2015) Optimal stimulus waveforms for eliciting a spike: How close is the spike-triggered average? In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 414–417Google Scholar
  12. Chang J, Paydarfar D (2018) Evolution of extrema features reveals optimal stimuli for biological state transitions. Sci Rep 8:3403Google Scholar
  13. Clay J, Forger D, Paydarfar D (2012) Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na+ channel inactivation. PLoS ONE 7(9):e45983Google Scholar
  14. Dettling M, Lisanby SH (2008) Electroconvulsive therapy for depression. New Engl J Med 358(6):645–646Google Scholar
  15. Fain ES, Sweeney MB, Franz MR (1989) Improved internal defibrillation efficacy with a biphasic waveform. Am Heart J 117(2):358–364Google Scholar
  16. Fishler MG (2000) Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes. IEEE Trans Biomed Eng 47(1):59–67Google Scholar
  17. Forger D (2017) Biological clocks, rhythms, and oscillations: the theory of biological timekeeping. MIT Press, CambridgeGoogle Scholar
  18. Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. J Theor Biol 230(4):521–532Google Scholar
  19. Forger DB, Paydarfar D, Clay JR (2011) Optimal stimulus shapes for neuronal excitation. PLoS Comput Biol 7(7):e1002089Google Scholar
  20. Foutz TJ, McIntyre CC (2010) Evaluation of novel stimulus waveforms for deep brain stimulation. J Neural Eng 7(6):066008Google Scholar
  21. Garratt A (1858) Galvanism for counteracting pain in the extraction of teeth. Boston Med Surg J 59:32–34Google Scholar
  22. Gelfand I, Fomin S, Silverman R (2000) Calculus of variations. Courier Dover Publications, Englewood CliffsGoogle Scholar
  23. Golfetto WA, da Silva Fernandes S (2012) A review of gradient algorithms for numerical computation of optimal trajectories. J Aerosp Technol Manag 4(2):131–143Google Scholar
  24. Grill W (2015) Model-based analysis and design of waveforms for efficient neural stimulation. Prog Brain Res 222:147–162Google Scholar
  25. Gurvich N, Yuniev G (1947) Restoration of heart rhythm during fibrillation by a condenser discharge. Am Rev Sov Med 4(3):252–256Google Scholar
  26. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 52(4):500–544Google Scholar
  27. Indic P, Gurdziel K, Kronauer RE, Klerman EB (2006) Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular mammalian circadian clock. J Biol Rhythm 21(3):222–232Google Scholar
  28. Izhikevich E (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572Google Scholar
  29. Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL, Nicolini H (2005) A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57(3):585–592Google Scholar
  30. Kane K, Taub A (1975) A history of local electrical analgesia. Pain 1(2):125–138Google Scholar
  31. Kelley HJ (1962) Methods of gradients. In: Leitmann G (ed) Optimization techniques, chap 6, 5th edn. Academic Press, Inc, New York, pp 206–254Google Scholar
  32. Kodoth V, Castro NC, Glover BM, Anderson JM, Escalona OJ, Lau E, Manoharan G (2011) Waveform optimization for internal cardioversion of atrial fibrillation. J Electrocardiol 44(6):689–693Google Scholar
  33. Kouwenhoven WB (1969) The development of the defibrillator. Ann Intern Med 71(3):449–458Google Scholar
  34. Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441Google Scholar
  35. Li W, Ripplinger CM, Lou Q, Efimov IR (2009) Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 6(7):1020–1027Google Scholar
  36. Lown B (1967) Electrical reversion of cardiac arrhythmias. Br Heart J 29(4):469–89Google Scholar
  37. Lown B, Neuman J, Amarasingham R, Berkovits B et al (1962) Comparison of alternating current with direct electroshock across the closed chest. Am J Cardiol 10(2):223–233Google Scholar
  38. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64(6):461–467Google Scholar
  39. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RF Jr, Bodenschatz E (2011) Low-energy control of electrical turbulence in the heart. Nature 475(7355):235–239Google Scholar
  40. Malkin RA, Jackson SR, Nguyen J, Yang Z, Guan D (2006) Experimental verification of theoretical predictions concerning the optimum defibrillation waveform. IEEE Trans Biomed Eng 53(8):1492–1498Google Scholar
  41. Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, Picq C, Job A, Canini F, Jacquier-Sarlin M, Bonaz B (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci Basic Clin 160(1–2):82–89Google Scholar
  42. Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198Google Scholar
  43. Mitchell M, Holland JH, Forrest S (1994) When will a genetic algorithm outperform hill climbing. Adv Neural Inf Process Syst 6:51–58Google Scholar
  44. Moehlis J, Shea-Brown E, Rabitz H (2006) Optimal inputs for phase models of spiking neurons. J Comput Nonlinear Dyn 1(4):358Google Scholar
  45. Nabi A, Moehlis J (2012) Time optimal control of spiking neurons. J Math Biol 64(6):981–1004Google Scholar
  46. Oakley JC, Prager JP (2002) Spinal cord stimulation: mechanisms of action. Spine 27(22):2574–2583Google Scholar
  47. Offner F (1946) Stimulation with minimum power. J Neurophysiol 9(5):387–390Google Scholar
  48. Park M, Pillow J (2012) Bayesian active learning with localized priors for fast receptive field characterization. Adv Neural Inf Process Syst 25(25):2357–2365Google Scholar
  49. Park M, Nassar M, Vikalo H (2013) Bayesian active learning for drug combinations. IEEE Trans Biomed Eng 60(11):3248–3255Google Scholar
  50. Paydarfar D, Forger DB, Clay JR (2006) Noisy inputs and the induction of on–off switching behavior in a neuronal pacemaker. J Neurophysiol 96(6):3338–3348Google Scholar
  51. Pontryagin LS, Boltyanskii V, Gamkrelidze R, Mishchenko E (1962) Mathematical theory of optimal processes. Wiley, New YorkGoogle Scholar
  52. Prugel-Bennett A (2004) When a genetic algorithm outperforms hill-climbing. Theor Comput Sci 320:135–153Google Scholar
  53. Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497–528Google Scholar
  54. Ross P, Corne D (1995) Comparing genetic algorithms, simulated annealing, and stochastic hillclimbing on timetabling problems. In: AISB workshop on evolutionary computing, pp 94–102Google Scholar
  55. Sengupta B, Stemmler MB (2014) Power consumption during neuronal computation. Proc IEEE 102(5):738–750Google Scholar
  56. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104(1):1–24Google Scholar
  57. Shan S, Wang GG (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41(2):219–241Google Scholar
  58. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489Google Scholar
  59. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Van Den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550(7676):354–359Google Scholar
  60. Spall JC (2003) Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley, HobokenGoogle Scholar
  61. Stillings D (1974) A survey of the history of electrical stimulation for pain to 1900. Med Instrum 9:255–259Google Scholar
  62. Sun FT, Morrell MJ, Wharen RE (2008) Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5(1):68–74Google Scholar
  63. Tzafriri AR, Lerner EI, Flashner-Barak M, Hinchcliffe M, Ratner E, Parnas H (2005) Mathematical modeling and optimization of drug delivery from intratumorally injected microspheres. Clin Cancer Res 11(2 I):826–834Google Scholar
  64. van Maanen MA, Vervoordeldonk MJ, Tak PP (2009) The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol 5:229–232Google Scholar
  65. von Stryk O, Bulirsch R (1992) Direct and indirect methods for trajectory optimization. Ann Oper Res 37(1):357–373Google Scholar
  66. Wilson D, Moehlis J (2014) Optimal chaotic desynchronization for neural populations. SIAM J Appl Dyn Syst 13(1):276–305Google Scholar
  67. Wilson D, Moehlis J (2016) Toward a more efficient implementation of antifibrillation pacing. PLoS ONE 11(7):1–28Google Scholar
  68. Wong PK, Yu F, Shahangian A, Cheng G, Sun R, Ho CM (2008) Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proc Natl Acad Sci 105(13):5105–5110Google Scholar
  69. Wongsarnpigoon A, Grill WM (2010) Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. J Neural Eng 7(4):1–20Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, Dell Medical SchoolThe University of Texas at AustinAustinUSA
  2. 2.The Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations