Advertisement

Biological Cybernetics

, Volume 113, Issue 1–2, pp 61–70 | Cite as

Controlling excitable wave behaviors through the tuning of three parameters

  • Sayak Bhattacharya
  • Pablo A. IglesiasEmail author
Review

Abstract

Excitable systems are a class of dynamical systems that can generate self-sustaining waves of activity. These waves are known to manifest differently under diverse conditions, whereas some travel as planar or radial waves, and others evolve into rotating spirals. Excitable systems can also form stationary stable patterns through standing waves. Under certain conditions, these waves are also known to be reflected at no-flux boundaries. Here, we review the basic characteristics of these four entities: traveling, rotating, standing and reflected waves. By studying their mechanisms of formation, we show how through manipulation of three critical parameters: time-scale separation, space-scale separation and threshold, we can interchangeably control the formation of all the aforementioned wave types.

Keywords

Excitable systems Wave propagation Spiral waves Standing waves Wave reflection 

Notes

Acknowledgements

This review arose as a consequence of a workshop on the control of cellular and molecular systems at the Mathematical Biosciences Institute at The Ohio State University, which receives major funding from the National Science Foundation Division of Mathematical Sciences. We are grateful to Yuchuan Miao, Marc Edwards and Peter Devreotes for fruitful conversations and collaboration on wave propagation in migratory cells.

References

  1. 1.
    Bement WM, Leda M, Moe AM, Kita AM, Larson ME, Golding AE, Pfeuti C, Su KC, Miller AL, Goryachev AB, von Dassow G (2015) Activator-inhibitor coupling between rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol 17(11):1471–83.  https://doi.org/10.1038/ncb3251 Google Scholar
  2. 2.
    Bhattacharya S, Iglesias PA (2016) The regulation of cell motility through an excitable network. IFAC-PapersOnLine 49(26):357–363Google Scholar
  3. 3.
    Braune M, Engel H (1993) Compound rotation of spiral waves in active media with periodically modulated excitability. Chem Phys Lett 211(6):534–540Google Scholar
  4. 4.
    Breña-Medina V, Champneys A (2014) Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys Rev E 90(3):032923Google Scholar
  5. 5.
    Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol Cybern 95(1):1–19Google Scholar
  6. 6.
    Cheng H, Lederer MR, Lederer W, Cannell M (1996) Calcium sparks and [Ca\(^{2+}\)]\(_{\rm i}\) waves in cardiac myocytes. Am J Physiol Cell Physiol 270(1):C148–C159Google Scholar
  7. 7.
    Dahlem MA, Müller SC (1997) Self-induced splitting of spiral-shaped spreading depression waves in chicken retina. Exp Brain Res 115(2):319–324Google Scholar
  8. 8.
    Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358):349–351Google Scholar
  9. 9.
    Deneke VE, Di Talia S (2018) Chemical waves in cell and developmental biology. J Cell Biol 217(4):1193–1204Google Scholar
  10. 10.
    Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y (2017) Excitable signal transduction networks in directed cell migration. Ann Rev Cell Dev Biol 33:103–125Google Scholar
  11. 11.
    Dockery J, Keener J (1989) Diffusive effects on dispersion in excitable media. SIAM J Appl Math 49(2):539–566Google Scholar
  12. 12.
    Dockery JD (1992) Existence of standing pulse solutions for an excitable activator-inhibitory system. J Dyn Diff Equat 4(2):231–257Google Scholar
  13. 13.
    Ermentrout G, Hastings S, Troy W (1984) Large amplitude stationary waves in an excitable lateral-inhibitory medium. SIAM J Appl Math 44(6):1133–1149Google Scholar
  14. 14.
    Ermentrout GB, Rinzel J (1996) Reflected waves in an inhomogeneous excitable medium. SIAM J Appl Math 56(4):1107–1128Google Scholar
  15. 15.
    Fife PC (1984) Propagator-controller systems and chemical patterns. In: Vidal C, Pacault A (eds) Non-equilibrium dynamics in chemical systems, pp 76–88. SpringerGoogle Scholar
  16. 16.
    Fife PC (2013) Mathematical aspects of reacting and diffusing systems, vol 28. Springer, BerlinGoogle Scholar
  17. 17.
    FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–66Google Scholar
  18. 18.
    Franci A, Sepulchre R (2016) A three-scale model of spatio-temporal bursting. SIAM J Appl Dyn Syst 15(4):2143–2175Google Scholar
  19. 19.
    Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39Google Scholar
  20. 20.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–44Google Scholar
  21. 21.
    Holmes WR, Carlsson AE, Edelstein-Keshet L (2012) Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Phys Biol 9(4):046005Google Scholar
  22. 22.
    Iglesias P (2013) Excitable systems in cell motility. In: 2013 IEEE 52nd annual conference on decision and control (CDC), pp 757–762. Florence, Italy.  https://doi.org/10.1109/CDC.2013.6759973
  23. 23.
    Iglesias PA, Devreotes PN (2012) Biased excitable networks: how cells direct motion in response to gradients. Curr Opin Cell Biol 24(2):245–53.  https://doi.org/10.1016/j.ceb.2011.11.009 Google Scholar
  24. 24.
    Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14(7):776–780Google Scholar
  25. 25.
    Jones CK, Rubin JE (1998) Existence of standing pulse solutions to an inhomogeneous reaction-diffusion system. J Dyn Differ Equ 10(1):1–35Google Scholar
  26. 26.
    Keener JP (1980) Waves in excitable media. SIAM J Appl Math 39(3):528–548Google Scholar
  27. 27.
    Keener JP (1986) A geometrical theory for spiral waves in excitable media. SIAM J Appl Math 46(6):1039–1056Google Scholar
  28. 28.
    Keener JP, Sneyd J (1998) Mathematical physiology, vol 1. Springer, New YorkGoogle Scholar
  29. 29.
    Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angelfish Pocamanthus. Nature 376(6543):765–768Google Scholar
  30. 30.
    Kosek J, Marek M (1995) Collision-stable waves in excitable reaction-diffusion systems. Phys Rev Lett 74(11):2134Google Scholar
  31. 31.
    Lapique L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization. J Physiol Pathol Gen 9:620–635Google Scholar
  32. 32.
    Leppänen T (2005) The theory of Turing pattern formation. In: Barrio RA, Kaski KK (eds) Current topics in physics: in honor of Sir Roger J Elliott, pp 199–227. World ScientificGoogle Scholar
  33. 33.
    Li G, Ouyang Q, Petrov V, Swinney HL (1996) Transition from simple rotating chemical spirals to meandering and traveling spirals. Phys Rev Lett 77(10):2105Google Scholar
  34. 34.
    Li JH, Haim M, Movassaghi B, Mendel JB, Chaudhry GM, Haffajee CI, Orlov MV (2009) Segmentation and registration of three-dimensional rotational angiogram on live fluoroscopy to guide atrial fibrillation ablation: a new online imaging tool. Heart Rhythm 6(2):231–237Google Scholar
  35. 35.
    Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L et al (2011) Low-energy control of electrical turbulence in the heart. Nature 475(7355):235Google Scholar
  36. 36.
    Meinhardt H (1993) A model for pattern formation of hypostome, tentacles, and foot in hydra: how to form structures close to each other, how to form them at a distance. Dev Biol 157(2):321–333Google Scholar
  37. 37.
    Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci USA 98(25):14202–14207Google Scholar
  38. 38.
    Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA, Devreotes PN (2017) Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat Cell Biol 19(4):329–340Google Scholar
  39. 39.
    Mikhailov A, Davydov V, Zykov V (1994) Complex dynamics of spiral waves and motion of curves. Physica D 70(1–2):1–39Google Scholar
  40. 40.
    Mikhailov AS, Zykov VS (1995) Spiral waves in weakly excitable media. In: Kapral R, Showalter K (eds) Chemical waves and patterns, pp 119–162. SpringerGoogle Scholar
  41. 41.
    Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys J 94(9):3684–3697Google Scholar
  42. 42.
    Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213Google Scholar
  43. 43.
    Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ (2016) Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. Elife 5(e17):267Google Scholar
  44. 44.
    Murray JD (2001) Mathematical biology. II spatial models and biomedical applications (Interdisciplinary applied mathematics), vol 18. Springer, New YorkGoogle Scholar
  45. 45.
    Murray JD (2002) Mathematical biology. I. (Interdisciplinary applied mathematics), vol 17. Springer, New YorkGoogle Scholar
  46. 46.
    Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070Google Scholar
  47. 47.
    Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM (2012) Treatment of atrial fibrillation by the ablation of localized sources: confirm (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol 60(7):628–636Google Scholar
  48. 48.
    Panfilov AV, Keener JP (1993) Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle. J Theor Biol 163(4):439–448Google Scholar
  49. 49.
    Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J (1993) Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 72(3):631–650Google Scholar
  50. 50.
    Petrov V, Scott SK, Showalter K (1994) Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction-diffusion system. Philos Trans R Soc Lond A Math Phys Eng Sci 347(1685):631–642Google Scholar
  51. 51.
    Quail T, Shrier A, Glass L (2014) Spatial symmetry breaking determines spiral wave chirality. Phys Rev Lett 113(15):158101Google Scholar
  52. 52.
    Rinzel J, Terman D (1982) Propagation phenomena in a bistable reaction-diffusion system. SIAM J Appl Math 42(5):1111–1137Google Scholar
  53. 53.
    Showalter K, Tyson JJ (1987) Luther’s 1906 discovery and analysis of chemical waves. J Chem Educ 64(9):742Google Scholar
  54. 54.
    Steinbock O, Zykov V, Müller SC (1993) Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366(6453):322–324Google Scholar
  55. 55.
    Takahashi K, Saleh M, Penn RD, Hatsopoulos NG (2011) Propagating waves in human motor cortex. Front Hum Neurosci 5:40Google Scholar
  56. 56.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72Google Scholar
  57. 57.
    Tyson JJ, Keener JP (1988) Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32(3):327–361Google Scholar
  58. 58.
    Vanag VK, Epstein IR (2001) Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol ot microemulsion. Phys Rev Lett 87(22):228301Google Scholar
  59. 59.
    Verschueren N, Champneys A (2017) A model for cell polarization without mass conservation. SIAM J Appl Dyn Syst 16(4):1797–1830Google Scholar
  60. 60.
    Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW (2007) An actin-based wave generator organizes cell motility. PLoS Biol 5(9):e221.  https://doi.org/10.1371/journal.pbio.0050221 Google Scholar
  61. 61.
    Wiener N, Rosenblueth A (1946) The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex 16(3):205–265Google Scholar
  62. 62.
    Wilson D, Moehlis J (2016) Toward a more efficient implementation of antifibrillation pacing. PloS ONE 11(7):e0158239Google Scholar
  63. 63.
    Winfree AT (1972) Spiral waves of chemical activity. Science 175(4022):634–636Google Scholar
  64. 64.
    Winfree AT (2001) The geometry of biological time. In: Interdisciplinary applied mathematics, vol 12. Springer, BerlinGoogle Scholar
  65. 65.
    Zhabotinsky AM, Eager MD, Epstein IR (1993) Refraction and reflection of chemical waves. Phys Rev Lett 71(10):1526Google Scholar
  66. 66.
    Zykov V (1980) Analytic evaluation of the relationship between the speed of a wave of excitation in a two-dimensional excitable medium and the curvature of its front. Biophysics 25(5):888–892Google Scholar
  67. 67.
    Zykov V, Krekhov A, Bodenschatz E (2017) Fast propagation regions cause self-sustained reentry in excitable media. Proc Nat Acad Sci 114(6):1281–1286Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations