Advertisement

Optimal phase control of biological oscillators using augmented phase reduction

  • Bharat Monga
  • Jeff Moehlis
Original Article

Abstract

We develop a novel optimal control algorithm to change the phase of an oscillator using a minimum energy input, which also minimizes the oscillator’s transversal distance to the uncontrolled periodic orbit. Our algorithm uses a two-dimensional reduction technique based on both isochrons and isostables. We develop a novel method to eliminate cardiac alternans by connecting our control algorithm with the underlying physiological problem. We also describe how the devised algorithm can be used for spike timing control which can potentially help with motor symptoms of essential and parkinsonian tremor, and aid in treating jet lag. To demonstrate the advantages of this algorithm, we compare it with a previously proposed optimal control algorithm based on standard phase reduction for the Hopf bifurcation normal form, and models for cardiac pacemaker cells, thalamic neurons, and circadian gene regulation cycle in the suprachiasmatic nucleus. We show that our control algorithm is effective even when a large phase change is required or when the nontrivial Floquet multiplier is close to unity; in such cases, the previously proposed control algorithm fails.

Keywords

Optimal control Phase reduction Alternans Circadian rhythms Spike timing control 

Notes

Acknowledgements

This work was supported by National Science Foundation Grants Nos. NSF-1363243 and NSF-1635542. We thank Dan Wilson for helpful discussions on numerical computation of the augmented phase reduction.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Benabid A, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret J, De Rougemont J, Gao D (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406.  https://doi.org/10.1016/0140-6736(91)91175-T CrossRefPubMedGoogle Scholar
  2. Benabid A, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81.  https://doi.org/10.1016/S1474-4422(08)70291-6 CrossRefPubMedGoogle Scholar
  3. Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comp 16:673–715.  https://doi.org/10.1162/089976604322860668’ CrossRefGoogle Scholar
  4. Castejón O, Guillamon A, Huguet G (2013) Phase-amplitude response functions for transient-state stimuli. J Math Neurosci 3(1):1.  https://doi.org/10.1186/2190-8567-3-13 CrossRefGoogle Scholar
  5. Christini D, Riccio M, Culianu C, Fox J, Karma A, Gilmour R Jr (2006) Control of electrical alternans in canine cardiac Purkinje fibers. Phys Rev Lett 96(10):104101.  https://doi.org/10.1103/PhysRevLett.96.104101 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Czeisler C, Kronauer R, Allan J, Duffy J, Jewett M, Brown E, Ronda J (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 2:4.  https://doi.org/10.1126/science.2734611 Google Scholar
  7. Czeisler C, Johnson M, Duffy J, Brown E, Ronda J, Kronauer R (1990) Exposure to bright light and darkness to treat physiologic maladaptation to night work. N Engl J Med 322(18):1253–1259.  https://doi.org/10.1056/NEJM199005033221801 CrossRefPubMedGoogle Scholar
  8. Dean D, Forger D, Klerman E et al (2009) Taking the lag out of jet lag through model-based schedule design. PLoS Comput Biol 5(6):E1000418.  https://doi.org/10.1371/journal.pcbi.1000418 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eastman C, Martin S (1999) How to use light and dark to produce circadian adaptation to night shift work. Ann Med 31(2):87–98.  https://doi.org/10.3109/07853899908998783 CrossRefPubMedGoogle Scholar
  10. Efimov D, Sacré P, Sepulchre R (2009) Controlling the phase of an oscillator: a phase response curve approach. In: Proceedings of the 48h IEEE conference on decision and control (CDC) held jointly with 2009 28th Chinese control conference, pp 7692–7697.  https://doi.org/10.1109/CDC.2009.5400901
  11. Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol 14. SIAM, PhiladelphiaCrossRefGoogle Scholar
  12. Forger D, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. J Theor Biol 230(4):521–532.  https://doi.org/10.1016/j.jtbi.2004.04.043 CrossRefPubMedGoogle Scholar
  13. Gad A, David G, Markus S, Hans R, Charna D, Florian K, Rau IM, Frederick W, Ueli S (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328.  https://doi.org/10.1016/j.cell.2008.06.050 CrossRefGoogle Scholar
  14. Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511626296 CrossRefGoogle Scholar
  15. Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89(1):120–129.  https://doi.org/10.1529/biophysj.104.058388 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guckenheimer J (1975) Isochrons and phaseless sets. J Math Biol 1(3):259–273.  https://doi.org/10.1007/BF01273747 CrossRefPubMedGoogle Scholar
  17. Guckenheimer J (1995) Phase portraits of planar vector fields: computer proofs. Exp Math 4(2):153–165.  https://doi.org/10.1080/10586458.1995.10504316 CrossRefGoogle Scholar
  18. Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations. Dynamical systems and bifurcations of vector fields. Springer, New York.  https://doi.org/10.1007/978-1-4612-1140-2 CrossRefGoogle Scholar
  19. Guevara M, Ward G, Shrier A, Glass L (1984) Electrical alternans and period doubling bifurcations. IEEE Comp Cardiol 562:167–170Google Scholar
  20. Guillamon A, Huguet G (2009) A computational and geometric approach to phase resetting curves and surfaces. SIAM J Appl Dyn Syst 8(3):1005–1042.  https://doi.org/10.1137/080737666 CrossRefGoogle Scholar
  21. Hall G, Gauthier D (2002) Experimental control of cardiac muscle alternans. Phys Rev Lett 88(19):198102.  https://doi.org/10.1103/PhysRevLett.88.198102 CrossRefPubMedGoogle Scholar
  22. Hall K, Christini D, Tremblay M, Collins J, Glass L, Billette J (1997) Dynamic control of cardiac alternans. Phys Rev Lett 78(23):4518.  https://doi.org/10.1103/PhysRevLett.78.4518 CrossRefGoogle Scholar
  23. Honeycutt R (1992) Stochastic runge–kutta algorithms. i. White noise. Phys Rev A 45:600–603.  https://doi.org/10.1103/PhysRevA.45.600 CrossRefPubMedGoogle Scholar
  24. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, CambridgeGoogle Scholar
  25. Kane A, Hutchison W, Hodaie M, Lozano A, Dostrovsky J (2009) Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor. Exp Neurol 217(1):171–176.  https://doi.org/10.1016/j.expneurol.2009.02.005 CrossRefPubMedGoogle Scholar
  26. Klerman E (2005) Clinical aspects of human circadian rhythms. J Biol Rhythms 20(4):375–386.  https://doi.org/10.1177/0748730405278353 CrossRefPubMedGoogle Scholar
  27. Kopell N, Howard L (1973) Plane wave solutions to reaction–diffusion equations. Stud Appl Math 52(4):291–328.  https://doi.org/10.1002/sapm1973524291 CrossRefGoogle Scholar
  28. Kühn A, Tsui A, Aziz T, Ray N, Brücke C, Kupsch A, Schneider GH, Brown P (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215(2):380–387.  https://doi.org/10.1016/j.expneurol.2008.11.008 CrossRefPubMedGoogle Scholar
  29. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, BerlinCrossRefGoogle Scholar
  30. Kuramoto Y (1997) Phase-and center-manifold reductions for large populations of coupled oscillators with application to non-locally coupled systems. Int J Bifurc Chaos 7(04):789–805.  https://doi.org/10.1142/S0218127497000595 CrossRefGoogle Scholar
  31. Malkin I (1949) Methods of Poincare and Liapunov in the theory of nonlinear oscillations. Gostexizdat, MoscowGoogle Scholar
  32. Marsden J, McCracken M (2012) The Hopf bifurcation and its applications, vol 9. Springer, New York.  https://doi.org/10.1007/978-1-4612-6374-6 Google Scholar
  33. Mauroy A, Mezić I, Moehlis J (2013) Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys D Nonlinear Phenom 261:19–30.  https://doi.org/10.1016/j.physd.2013.06.004 CrossRefGoogle Scholar
  34. Mines G (1913) On dynamic equilibrium in the heart. J Physiol 46(4–5):349–383.  https://doi.org/10.1113/jphysiol.1913.sp001596 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Minors D, Waterhouse J, Wirz-Justice A (1991) A human phase-response curve to light. Neurosci Lett 133(1):36–40.  https://doi.org/10.1016/0304-3940(91)90051-T CrossRefPubMedGoogle Scholar
  36. Moehlis J, Shea-Brown E, Rabitz H (2006) Optimal inputs for phase models of spiking neurons. ASME J Comput Nonlinear Dyn 1(4):358–367.  https://doi.org/10.1115/1.2338654 CrossRefGoogle Scholar
  37. Monga B, Wilson D, Matchen T, Moehlis J (2018) Phase reduction and phase-based optimal control for biological systems: a tutorial (Under Review)Google Scholar
  38. Nabi A, Moehlis J (2012) Time optimal control of spiking neurons. J Math Biol 64(6):981–1004.  https://doi.org/10.1007/s00285-011-0441-5 CrossRefPubMedGoogle Scholar
  39. Nabi A, Mirzadeh M, Gibou F, Moehlis J (2013a) Minimum energy desynchronizing control for coupled neurons. J Comput Neurosci 34(2):259–271.  https://doi.org/10.1007/s10827-012-0419-3 CrossRefPubMedGoogle Scholar
  40. Nabi A, Stigen T, Moehlis J, Netoff T (2013b) Minimum energy control for in vitro neurons. J Neural Eng 10(3):036005.  https://doi.org/10.1088/1741-2560/10/4/049501 CrossRefPubMedGoogle Scholar
  41. Netoff T, Schwemmer M, Lewis T (2012) Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Schultheiss N, Prinz A, Butera R (eds) Phase response curves in neuroscience. Springer, New York, pp 95–129.  https://doi.org/10.1007/978-1-4614-0739-35 CrossRefGoogle Scholar
  42. Nolasco J, Dahlen R (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25(2):191–196CrossRefPubMedGoogle Scholar
  43. Pastore J, Girouard S, Laurita K, Akar F, Rosenbaum D (1999) Mechanism linking t-wave alternans to the genesis of cardiac fibrillation. Circulation 99(10):1385–1394.  https://doi.org/10.1161/01.CIR.99.10.1385 CrossRefPubMedGoogle Scholar
  44. Rappel WJ, Fenton F, Karma A (1999) Spatiotemporal control of wave instabilities in cardiac tissue. Phys Rev Lett 83(2):456.  https://doi.org/10.1103/PhysRevLett.83.456 CrossRefGoogle Scholar
  45. Rea M, Bierman A, Figueiro M, Bullough J (2008) A new approach to understanding the impact of circadian disruption on human health. J Circ Rhythms 6(1):7.  https://doi.org/10.1186/1740-3391-6-7 CrossRefGoogle Scholar
  46. Rubin J, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235.  https://doi.org/10.1023/B:JCNS.0000025686.47117.67 CrossRefPubMedGoogle Scholar
  47. Shirasaka S, Kurebayashi W, Nakao H (2017) Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems. Chaos 27(023):119Google Scholar
  48. Snari R, Tinsley M, Wilson D, Faramarzi S, Netoff T, Moehlis J, Showalter K (2015) Desynchronization of stochastically synchronized chemical oscillators. Chaos Interdisc J Nonlinear Sci 25(12):123116.  https://doi.org/10.1063/1.4937724 CrossRefGoogle Scholar
  49. Stigen T, Danzl P, Moehlis J, Netoff T (2011) Controlling spike timing and synchrony in oscillatory neurons. J Neurophysiol 105(5):2074.  https://doi.org/10.1186/1471-2202-12-S1-P223 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tass P (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybernet 89(2):81–88.  https://doi.org/10.1007/s00422-003-0425-7 CrossRefGoogle Scholar
  51. Tass P (2007) Phase resetting in medicine and biology: stochastic modelling and data analysis, vol 172. Springer, Berlin.  https://doi.org/10.1007/978-3-540-38161-7 Google Scholar
  52. Wang Q, Young LS (2003) Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun Math Phys 240(3):509–529.  https://doi.org/10.1007/s00220-003-0902-9 CrossRefGoogle Scholar
  53. Wataru K, Shirasaka S, Nakao H (2013) Phase reduction method for strongly perturbed limit cycle oscillators. Phys Rev Lett 111(214):101.  https://doi.org/10.1103/PhysRevLett.111.214101 Google Scholar
  54. Wedgwood K, Lin K, Thul R, Coombes S (2013) Phase-amplitude descriptions of neural oscillator models. J Math Neurosci 3(1):2.  https://doi.org/10.1186/2190-8567-3-2 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wever R (1985) Use of light to treat jet lag: differential effects of normal and bright artificial light on human circadian rhythms. Ann N Y Acad Sci 453(1):282–304.  https://doi.org/10.1111/j.1749-6632.1985.tb11818.x CrossRefPubMedGoogle Scholar
  56. Wilson C, Beverlin B, Netoff T (2011) Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front Syst Neurosci.  https://doi.org/10.3389/fnsys.2011.00050 Google Scholar
  57. Wilson D, Moehlis J (2014) Optimal chaotic desynchronization for neural populations. SIAM J Appl Dyn Syst 13(1):276.  https://doi.org/10.1137/120901702 CrossRefGoogle Scholar
  58. Wilson D, Moehlis J (2015a) Clustered desynchronization from high-frequency deep brain stimulation. PLoS Comput Biol 11(12):e1004673.  https://doi.org/10.1371/journal.pcbi.1004673 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wilson D, Moehlis J (2015b) Extending phase reduction to excitable media: theory and applications. SIAM Rev 57(2):201–222.  https://doi.org/10.1137/140952478 CrossRefGoogle Scholar
  60. Wilson D, Moehlis J (2016) Isostable reduction of periodic orbits. Phys Rev E 94(5):052213.  https://doi.org/10.1103/PhysRevE.94.052213 CrossRefPubMedGoogle Scholar
  61. Winfree A (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16(1):15–42.  https://doi.org/10.1016/0022-5193(67)90051-3 CrossRefPubMedGoogle Scholar
  62. Winfree A (2001) The geometry of biological time, vol Second. Springer, New York.  https://doi.org/10.1007/978-1-4757-3484-3 CrossRefGoogle Scholar
  63. Yanagihara K, Noma A, Irisawa H (1980) Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments. Jpn J Physiol 30(6):841–857.  https://doi.org/10.2170/jjphysiol.30.841 CrossRefPubMedGoogle Scholar
  64. Zhang J, Wen J, Julius A (2012) Optimal circadian rhythm control with light input for rapid entrainment and improved vigilance. In: Proceedings of the 51st IEEE conference on decision and control (CDC). IEEE, pp 3007–3012.  https://doi.org/10.1109/CDC.2012.6426226
  65. Zlotnik A, Li J (2014) Optimal subharmonic entrainment of weakly forced nonlinear oscillators. SIAM J Appl Dyn Syst 13(4):1654–1693.  https://doi.org/10.1137/140952211 CrossRefGoogle Scholar
  66. Zlotnik A, Chen Y, Kiss I, Tanaka H, Li JS (2013) Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. Phys Rev Lett 111(2):024102.  https://doi.org/10.1103/PhysRevLett.111.024102 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations