Biological Cybernetics

, Volume 112, Issue 1–2, pp 153–161 | Cite as

Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective

  • Matthieu Gilson


Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input–output mapping—determined by EC—for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data—movie viewing versus resting state—illustrates that changes in local variability and changes in brain coordination go hand in hand.


Whole-brain dynamic model FMRI data Covariance coding 



The author thanks Moritz Deger and Martin Nawrot for organizing the 12th International Neural Coding Workshop, NC2016. The author is also grateful to Pierre Yger, Ruben Moreno-Bote, Vicente Pallarez, Andrea Insabato, Gustavo Deco and Morten Kringelbach for constructive discussions.


  1. Battaglia D, Witt A, Wolf F, Geisel T (2012) Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput Biol 8:e1002438. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belliveau JW, Cohen MS, Weisskoff RM, Buchbinder BR, Rosen BR (1991) Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroimaging 1:36–41CrossRefPubMedGoogle Scholar
  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  4. Bolt T, Prince EB, Nomi JS, Messinger D, Llabre MM, Uddin LQ (2017) Combining region- and network-level brain-behavior relationships in a structural equation model. Neuroimage 165:158–169. CrossRefPubMedGoogle Scholar
  5. Boynton G, Engel S, Glover G, Heeger D (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221CrossRefPubMedGoogle Scholar
  6. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci USA 108:783–788. CrossRefGoogle Scholar
  7. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMedGoogle Scholar
  8. Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network oscillations in resting-state functional connectivity. Neuroimage 57:130–139. CrossRefPubMedGoogle Scholar
  9. Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98. CrossRefPubMedGoogle Scholar
  10. Chang LJ, Gianaros PJ, Manuck SB, Krishnan A, Wager TD (2015) A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol 13:e1002180. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choi S, Amari S, Cichocki A (2000) Natural gradient learning for spatio-temporal decorrelation: recurrent network. IEICE Trans Fundamentals 83:2715–2722Google Scholar
  12. Ciuciu P, Abry P, He BJ (2014) Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks. Neuroimage 95:248–263. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:422–427CrossRefGoogle Scholar
  14. Cordes D, Haughton V, Arfanakis K, Wendt G, Turski P, Moritz C, Quigley M, Meyerand M (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21:1636–1644PubMedGoogle Scholar
  15. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43–56. CrossRefPubMedGoogle Scholar
  16. Deco G, Ponce-Alvarez A, Mantini D, Romani G, Hagmann P, Corbetta M (2013) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci 33:11239–11252. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deco G, Kringelbach ML (2014) Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84:892–905. CrossRefPubMedGoogle Scholar
  18. Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16:430–439. CrossRefPubMedGoogle Scholar
  19. Deco G, Van Hartevelt T, Fernandes H, Stevner A, Kringelbach M (2017) The most relevant human brain regions for functional connectivity: evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. Neuroimage 146:197–210CrossRefPubMedGoogle Scholar
  20. Engel AK, Gerloff C, Hilgetag CC, Nolte G (2013) Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80:867–886. CrossRefPubMedGoogle Scholar
  21. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. CrossRefPubMedGoogle Scholar
  22. Freestone DR, Karoly PJ, Nešić D, Aram P, Cook MJ, Grayden DB (2014) Estimation of effective connectivity via data-driven neural modeling. Front Neurosci 28:383. Google Scholar
  23. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235CrossRefPubMedPubMedCentralGoogle Scholar
  24. Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466–477. CrossRefPubMedGoogle Scholar
  25. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302CrossRefPubMedGoogle Scholar
  26. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:8CrossRefGoogle Scholar
  27. Friston KJ, Kahan J, Biswal B, Razi A (2014) A DCM for resting state fMRI. Neuroimage 94:396–407CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G (2016) Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome. PLoS Comput Biol 12:e1004762CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gilson M, Deco G, Friston K, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M (2017) Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. Neuroimage.
  30. Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magn Reson Imaging 21:1251–1261CrossRefPubMedGoogle Scholar
  31. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hall EL, Robson SE, Morris PG, Brookes MJ (2014) The relationship between MEG and fMRI. Neuroimage 102(Pt 1):80–91. CrossRefPubMedGoogle Scholar
  33. He BJ (2011) Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786–13795CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151. CrossRefPubMedGoogle Scholar
  35. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52:766–776. CrossRefPubMedGoogle Scholar
  36. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378. CrossRefPubMedGoogle Scholar
  37. Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40:1064–1076. CrossRefPubMedGoogle Scholar
  38. Linden DEJ, Turner DL (2016) Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Curr Opin Neurol 29:412–418. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lütkepohl H (2005) New introduction to multiple time series analysis. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  40. Malsburg C (1981) The correlation theory of brain function. Tech. rep, Max Planck Institute for Biophysical Chemistry in GöttingenGoogle Scholar
  41. Messé A, Rudrauf D, Benali H, Marrelec G (2014) Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput Biol 10:e1003530. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mehta-Pandejee G, Robinson PA, Henderson JA, Aquino KM, Sarkar S (2017) Inference of direct and multistep effective connectivities from functional connectivity of the brain and of relationships to cortical geometry. J Neurosci Methods 283:42–54CrossRefPubMedGoogle Scholar
  43. Mitra A, Snyder AZ, Hacker CD, Raichle ME (2014) Lag structure in resting-state fMRI. J Neurophysiol 111:2374–2391. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME (2015) Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep. Elife 4:e10781. 10781
  45. Pallares V, Insabato A, Sanjuan A, Kühn S, Mantini D, Deco G, Gilson M (2017) Subject- and behavior-specific signatures extracted from fMRI data using whole-brain effective connectivity. biorxiv
  46. Palmigiano A, Geisel T, Wolf F, Battaglia D (2017) Flexible information routing by transient synchrony. Nat Neurosci 20:1014–1022. CrossRefPubMedGoogle Scholar
  47. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411. CrossRefPubMedGoogle Scholar
  48. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Richardson M (2012) Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry 83:1238–1248CrossRefPubMedGoogle Scholar
  50. Sala-Llonch R, Peña-Gómez C, Arenaza-Urquijo EM, Vidal-Piñeiro D, Bargalló N, Junqué C, Bartrés-Faz D (2012) Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex 48(9):1187–1196. CrossRefPubMedGoogle Scholar
  51. Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V (2013) The virtual brain: a simulator of primate brain network dynamics. Front Neuroinform 7:10. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P (2015) An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Neuroimage 117:343–357. CrossRefPubMedGoogle Scholar
  53. Shen H (2014) Neuroscience: tuning the brain. Nature 507:290–292. CrossRefPubMedGoogle Scholar
  54. Sporns O (2013) The human connectome: origins and challenges. Neuroimage 80:53–61. CrossRefPubMedGoogle Scholar
  55. Stephan KE, Mathys C (2014) Computational approaches to psychiatry. Curr Opin Neurobiol 25:85–92. CrossRefPubMedGoogle Scholar
  56. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. CrossRefPubMedGoogle Scholar
  57. Uhlhaas P, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRefPubMedGoogle Scholar
  58. Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58:339–361. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zamora-López G, Chen Y, Deco G, Kringelbach ML, Zhou C (2016) Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs. Sci Rep 6:38424. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zamora-López G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5:83. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations