Biological Cybernetics

, Volume 110, Issue 4–5, pp 333–343 | Cite as

Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal

  • Lutz Kettler
  • Jakob Christensen-Dalsgaard
  • Ole Næsbye Larsen
  • Hermann Wagner
Prospects

Abstract

The middle ears of birds are typically connected by interaural cavities that form a cranial canal. Eardrums coupled in this manner may function as pressure difference receivers rather than pressure receivers. Hereby, the eardrum vibrations become inherently directional. The barn owl also has a large interaural canal, but its role in barn owl hearing and specifically in sound localization has been controversial so far. We discuss here existing data and the role of the interaural canal in this species and add a new dataset obtained by laser Doppler vibrometry in a free-field setting. Significant sound transmission across the interaural canal occurred at low frequencies. The sound transmission induces considerable eardrum directionality in a narrow band from 1.5 to 3.5 kHz. This is below the frequency range used by the barn owl for locating prey, but may conceivably be used for locating conspecific callers.

Keywords

Hearing Auditory Barn owl Pressure difference receiver Sound localization Interaural canal 

Notes

Acknowledgments

The authors thank S. Brill for technical assistance and logistical support and K.L. Willis and C.E. Carr for providing a 3D-reconstruction of the interaural canal. This work was supported by the Deutsche Forschungsgemeinschaft (Grant WA 606/20-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The owls were treated and cared for in accordance with the guidelines of the “Landespräsidium für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany”.

References

  1. Bierman HS, Thornton JL, Jones HG et al (2014) Biophysics of directional hearing in the American alligator (Alligator mississippiensis). J Exp Biol 217:1094–1107. doi: 10.1242/jeb.092866 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bühler P, Epple W (1980) Die Lautäußerungen der Schleiereule (Tyto alba). J Ornithol 121(1):36–70CrossRefGoogle Scholar
  3. Calford MB (1988) Constraints on the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502. doi: 10.1007/BF00612514 CrossRefGoogle Scholar
  4. Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510. doi: 10.1007/BF00612515 CrossRefGoogle Scholar
  5. Cazettes F, Fischer BJ, Peña JL (2014) Spatial cue reliability drives frequency tuning in the barn Owl’s midbrain. Elife. doi: 10.7554/eLife.04854
  6. Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45. doi: 10.1016/j.heares.2010.08.007 CrossRefPubMedGoogle Scholar
  7. Christensen-Dalsgaard J, Manley G (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217. doi: 10.1242/jeb.01511 CrossRefPubMedGoogle Scholar
  8. Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of lizard eardrums. J Assoc Res Otolaryngol 9:407–416. doi: 10.1007/s10162-008-0130-2 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christensen-Dalsgaard J, Tang Y, Carr CE (2011) Binaural processing by the gecko auditory periphery. J Neurophysiol 105:1992–2004. doi: 10.1152/jn.00004.2011 CrossRefPubMedGoogle Scholar
  10. Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133CrossRefPubMedGoogle Scholar
  11. Counter SA, Borg E (1979) Physiological activation of the stapedius muscle in Gallus gallus. Acta Otolaryngol 403:13–19CrossRefGoogle Scholar
  12. Dyson M, Klump G, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182(5):695–702CrossRefGoogle Scholar
  13. Hausmann L, von Campenhausen M, Wagner H (2010) Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba). J Comp Physiol A 169(9):601–612. doi: 10.1007/s00359-010-0546-0 CrossRefGoogle Scholar
  14. Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34. doi: 10.1016/S0378-5955(98)00014-8 CrossRefPubMedGoogle Scholar
  15. Kettler L, Wagner H (2014) Influence of double stimulation on sound-localization behavior in barn owls. J Comp Physiol A 200(12):1033–1044. doi: 10.1007/s00359-014-0953-8 CrossRefGoogle Scholar
  16. Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133:13–21CrossRefGoogle Scholar
  17. Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424Google Scholar
  18. Köppl C, Carr CE (2003) Computational diversity in the cochlear nucleus angularis of the barn owl. J Neurophysiol 89:2313–2329. doi: 10.1152/jn.00635.2002 CrossRefPubMedGoogle Scholar
  19. Larsen ON, Dooling RJ, Michelsen A (2006) The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A 192(10):1063–1072. doi: 10.1007/s00359-006-0138-1 CrossRefGoogle Scholar
  20. Larsen ON, Dooling RJ, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long JR, Lyon RF et al (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 11–17Google Scholar
  21. Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bush-crickets. J Comp Physiol A 175:145–151. doi: 10.1007/bf00215110 CrossRefPubMedGoogle Scholar
  22. Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinspir Biomim 3:011001. doi: 10.1088/1748-3182/3/1/011001 CrossRefPubMedGoogle Scholar
  23. Moiseff A, Konishi M (1981) The owl’s interaural pathway is not involved in sound localization. J Comp Neurol 144:299–304Google Scholar
  24. Norberg RA (1968) Physical factors in directional hearing in Aegolius funereus (Linné) (Strigiformes), with special reference to the significance of the asymmetry of the external ears. Ark Zool 20:181–204Google Scholar
  25. Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573PubMedGoogle Scholar
  26. Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level difference on head-turning behavior. J Comp Physiol A 187:225–233CrossRefPubMedGoogle Scholar
  27. Singheiser M, Plachta DTT, Brill S et al (2010) Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A 196:227–240. doi: 10.1007/s00359-010-0508-6 CrossRefGoogle Scholar
  28. Stellbogen E (1930) Über das äußere und mittlere Ohr des Waldkauzes (Syrnium Aluco L.). Zeitschrift für Morphol und Ökologie der Tiere 19:686–731CrossRefGoogle Scholar
  29. Takahashi TT, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786PubMedGoogle Scholar
  30. Vonderschen K, Wagner H (2009) Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. J Neurophysiol 101:2348–2361. doi: 10.1152/jn.91196.2008
  31. Vonderschen K, Wagner H (2012) Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway. J Neurosci 32:5911–5923. doi: 10.1523/JNEUROSCI.5429-11.2012 CrossRefPubMedGoogle Scholar
  32. Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) Analytical model of internally coupled ears. J Acoust Soc Am 128:909–918. doi: 10.1121/1.3455853 CrossRefPubMedGoogle Scholar
  33. Wagner H, Kettler L, Orlowski J, Tellers P (2013) Neuroethology of prey capture in the barn owl (Tyto alba L.). J Physiol 107:51–61. doi: 10.1016/j.jphysparis.2012.03.004 Google Scholar
  34. White LB, Boashash B (1990) Cross spectral analysis of nonstationary processes. IEEE Trans Inf Theory 36:830–835. doi: 10.1109/18.53742 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lutz Kettler
    • 1
    • 2
  • Jakob Christensen-Dalsgaard
    • 3
  • Ole Næsbye Larsen
    • 3
  • Hermann Wagner
    • 2
  1. 1.Department of Biology, Center for Comparative and Evolutionary Biology of HearingUniversity of Maryland College ParkCollege ParkUSA
  2. 2.Department of Zoology and Animal PhysiologyInstitute of Biology II, RWTH AachenAachenGermany
  3. 3.Department of BiologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations