Advertisement

Biological Cybernetics

, Volume 108, Issue 5, pp 559–572 | Cite as

Cell assemblies in the cerebral cortex

  • Günther Palm
  • Andreas Knoblauch
  • Florian Hauser
  • Almut Schüz
Prospects

Abstract

Donald Hebb’s concept of cell assemblies is a physiology-based idea for a distributed neural representation of behaviorally relevant objects, concepts, or constellations. In the late 70s Valentino Braitenberg started the endeavor to spell out the hypothesis that the cerebral cortex is the structure where cell assemblies are formed, maintained and used, in terms of neuroanatomy (which was his main concern) and also neurophysiology. This endeavor has been carried on over the last 30 years corroborating most of his findings and interpretations. This paper summarizes the present state of cell assembly theory, realized in a network of associative memories, and of the anatomical evidence for its location in the cerebral cortex.

Keywords

Cerebral cortex Cell assemblies Synaptic plasticity Associative memory Brain theory 

References

  1. Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, BerlinGoogle Scholar
  2. Abeles M (1988) Neural codes for higher brain functions. In: Markowitsch HJ (ed) Information processing by the brain. Hans Huber Pub, Toronto, pp 225–238Google Scholar
  3. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, CambridgeGoogle Scholar
  4. Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, Tishby N, Vaadia E (1995) Cortical activity flips among quasi stationary states. Proc Natl Acad Sci USA 92:8616–8620PubMedCentralPubMedGoogle Scholar
  5. Aertsen A (ed) (1993) Brain theory. Spatio-temporal aspects of brain function, Elsevier, AmsterdamGoogle Scholar
  6. Amir Y, Harel M, Malach R (1993) Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J Comp Neurol 334:19–46PubMedGoogle Scholar
  7. Amit D (1989) Modeling brain function: the world of attractor neural networks. Cambridge University Press, CambridgeGoogle Scholar
  8. Anderson JR et al (2004) An integrated theory of mind. Psychol Rev 111:1036–1060PubMedGoogle Scholar
  9. Bär TH (1977) Wirkung chronischer hypoxie auf die postnatale synaptogenese im occipitalcortex der ratte. Verh Anat Ges 71:915– 924Google Scholar
  10. Baillarger JGF (1840) Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém de l’Acad royale médécine 8:149–183Google Scholar
  11. Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8:1185–1202PubMedGoogle Scholar
  12. Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinf 6:30Google Scholar
  13. Bi G, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472Google Scholar
  14. Bienenstock E (1995) A model of neocortex. Netw Comput Neural Syst 6:179–224Google Scholar
  15. Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24(39): 8441–8453Google Scholar
  16. Binzegger T, Douglas RJ, Nartin KAC (2007) Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J Neurosci 27(45):12242–12254PubMedGoogle Scholar
  17. Blakemore C, Cooper GF (1971) Modification of the visual cortex by experience. Brain Res 31:366PubMedGoogle Scholar
  18. Bock NA, Hashim E, Janik R, Konyer NB, Weiss M, Stanisz GJ, Turner R, Geyer S (2013) Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. NeuroImage 65:1–12PubMedGoogle Scholar
  19. Bouchain DA, Palm G (2012) Neural coding in graphs of bidirectional associative memories. Brain Res 1434:189–199. doi: 10.1016/j.brainres.2011.09.050 PubMedGoogle Scholar
  20. Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156PubMedGoogle Scholar
  21. Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Proceedings Symposium on theoretical approaches to complex systems 1977. Lecture notes in biomathematics 21, Springer, Berlin, pp 171–188Google Scholar
  22. Braitenberg V, Schüz A (1991) Cortex: statistics and geometry of neuronal connectivity. Springer, BerlinGoogle Scholar
  23. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry. Revised edition of “Anatomy of the cortex: statistics and geometry” (1991) Springer, BerlinGoogle Scholar
  24. Brodal P (2010) The central nervous system. Oxford University Press, Oxford, Structure and functionGoogle Scholar
  25. Burns B, Webb AC (1976) The spontaneous activity of neurones in the cat’s cerebral cortex. Proc R Soc London B 194:211–223Google Scholar
  26. Carporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46Google Scholar
  27. Cauller L (1995) Layer I of primary sensory neocortex: where top–down converges upon bottom–up. Behav Brain Res 71:163–170PubMedGoogle Scholar
  28. Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neurosci 13(3):344–352PubMedGoogle Scholar
  29. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287PubMedGoogle Scholar
  30. Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory neurons and pyramidal neurons. Nat Neurosci 3(7):701–707PubMedGoogle Scholar
  31. DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316PubMedGoogle Scholar
  32. Edelman GM, Tononi G (2000) A Universe of consciousness. How matter becomes imagination. Basic Books, New YorkGoogle Scholar
  33. Eliasmith Ch (2013) How to build a brain: a neural architecture for biological cognition. Oxford University Press, New YorkGoogle Scholar
  34. Evans EF (1968) Upper and lower levels of the auditory system: a contrast of structure and function. In: Caianiello ER (ed) Neural networks. Springer, Berlin, pp 24–33Google Scholar
  35. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedGoogle Scholar
  36. Gennari F (1782) De peculiari structura cerebri nonnullisque ejus morbis. ParmaGoogle Scholar
  37. George D, Hawkins J (2009) Towards a mathematical theory of cortical micro-circuits. PLoS Comput Biol 5(10)Google Scholar
  38. Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503–515PubMedGoogle Scholar
  39. Girard P, Hupe JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85:1328–1331PubMedGoogle Scholar
  40. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593PubMedGoogle Scholar
  41. Grossberg S (1976a) Adaptive pattern classification and universal recording: I. Parallel development and coding of neural feature detectors. Biol Cybern 23:121–134PubMedGoogle Scholar
  42. Grossberg S (1976b) Adaptive pattern classification and universal recording: II. Feedback, expectation, olfaction, and illusions. Biol Cybern 23:187–202PubMedGoogle Scholar
  43. Grossberg S (1982) Studies of mind and brain. Reidel, BostonGoogle Scholar
  44. Grossberg S (1999) How does the cerebral cortex work? learning, attention and grouping by the laminar cirscuits of visual cortex. Spat Vis 12:163–186PubMedGoogle Scholar
  45. Hauser F, Palm G, Bouchain D (2009) Coexistence of cell assemblies and STDP. In: Polycerpou Ch, Panayiotou G, Ellinas G (eds) Artificial neural networks - ICANN 2009, Part I. LNCS 5768. Springer, Berlin, pp 191–197Google Scholar
  46. Hauser F, Bouchain D, Palm G (2010) Simple constraints for zero-lag synchronous oscillations under STDP. In: Diamantaras K, Duch W, Iliadis LS (eds). ICANN 2010, Part I. LNCS 6352, Springer, Berlin, 311–316Google Scholar
  47. Hauser F (2012) Formation and stability of spiking cell assemblies with spike-timing-dependent synaptic plasticity. Dissertation, University of UlmGoogle Scholar
  48. Hawkins J, Blakeslee S (2004) On intelligence. Times Books, Henry Holt and Company, New YorkGoogle Scholar
  49. Hebb DO (1949) The organization of behaviour. Wiley, New YorkGoogle Scholar
  50. Hecht-Nielsen R (2007) Confabulation theory. The mechanism of thought. Springer, BerlinGoogle Scholar
  51. Hellwig B (1993) How the myelin picture of the human cortex can be computed from cytoarchitectural data. A bridge between von economo and vogt. J Hirnforsch 34:387–402PubMedGoogle Scholar
  52. Herz A, Creutzfeldt O, Fuster J (1964) Statistische eigenschaften der neuronaktivität im ascendierenden visuellen system. Kybernetik 2:61–71PubMedGoogle Scholar
  53. Hirsch HVB, Spinelli DN (1971) Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp Brain Res 13:1–43Google Scholar
  54. Hopcroft JE, Ullman JD (1979) Introducion to automata theory, languages and computation. Addison-Wesley, ReadingGoogle Scholar
  55. Houser CR, Vaughan JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral Cortex, vol 2., Functional properties of cortical cellsPlenum Press New York, London, pp 63–89Google Scholar
  56. Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat’s striate cortex. J Physiol 148:574–591PubMedCentralPubMedGoogle Scholar
  57. Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041– 1059Google Scholar
  58. Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–306PubMedGoogle Scholar
  59. Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Ferrier lecture. Proc R Soc Lond B 198:1–59PubMedGoogle Scholar
  60. Humble J, Denham S, Wennekers Th (2012) Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity. Front Comput Neurosci 6(84). doi: 10.3389/fncom.2012.00084
  61. Huyck CR, Passmore PJ (2013) A review of cell assemblies. Biol Cybern. doi: 10.1007/s00422-013-0555-5 PubMedGoogle Scholar
  62. Izhikevich E (2006) Polychronization: computation with spikes. Neural Comput 18:245–282PubMedGoogle Scholar
  63. Izhikevich EM, Hoppensteadt FC (2009) Polychronous wavefront computations. Int J of Bifurcation and Chaos 19(5):1733–1739Google Scholar
  64. Jones EG (1985) The thalamus. Plenum Press, New YorkGoogle Scholar
  65. Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26(28):7424–7432PubMedGoogle Scholar
  66. Kara Kayikci Z, Palm G (2008) Word recognition and incremental learning based on neural associative memories and hidden Markov models. In: Proceedings 16th europe symposium on artificial neural networks, pp 119–124Google Scholar
  67. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956PubMedGoogle Scholar
  68. Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev 9:195–205Google Scholar
  69. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825PubMedGoogle Scholar
  70. Kleene SC (1956) Representation of events in nerve nets and finite automata. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 3–42Google Scholar
  71. Knoblauch A, Palm G (2001) Pattern separation and synchronization in spiking associative memories and visual areas. Neural Netw 14:763–780PubMedGoogle Scholar
  72. Knoblauch A, Palm G (2002a) Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol Cybern 87:151–167PubMedGoogle Scholar
  73. Knoblauch A, Palm G (2002b) Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on a larger space and time scales. Biol Cybern 87:168–184PubMedGoogle Scholar
  74. Knoblauch A, Sommer F (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing 52–54:301–306Google Scholar
  75. Knoblauch A, Sommer F (2004) Spike-timing-dependent synaptic plasticity can form “zero lag” links for cortical oscillations. Neurocomputing 58–60:185–190Google Scholar
  76. Knoblauch A, Fay R, Kaufmann U, Markert H, Palm G (2004) Associating words to visually recognized objects. In: Coradeschi S, Saffiotti A (eds.) Anchoring symbols to sensor data. Papers from the AAAI Workshop. Technical Report WS-04-03, AAAI Press, Menlo Park, California, pp 10–16Google Scholar
  77. Knoblauch A, Palm G (2005) What is signal and what is noise in the brain? Biosystems 79(1–3):83–90PubMedGoogle Scholar
  78. Knoblauch A, Markert, H, Palm G (2005a): An associative cortical model of language understanding and action planning. In: Mira J, Alvarez JR (eds.) Artificial Intelligence and knowledge engineering applications: A bioinspired approach. Lecture notes in computer science, LNCS 3562, Springer, Berlin, pp 405–414Google Scholar
  79. Knoblauch A, Markert H, Palm G (2005b) An associative model of cortical language and action processing. In: Cangelosi A, Bugmann G, Borisyuk R (eds) Modeling language, cognition and action. Proceedings of 9th neural computation and psycholog workshop NCPW9, World Scientific, pp 79–83Google Scholar
  80. Knoblauch A, Kupper R, Gewaltig MO, Körner U, Körner E (2007) A cell assembly based model for the cortical microcircuitry. Neurocomputing 70:1838–1842Google Scholar
  81. Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289– 341Google Scholar
  82. Knoblauch A (2011) Neural associative memory with optimal Bayesian learning. Neural Computation 23:1393–1451PubMedGoogle Scholar
  83. Knoblauch A, Hauser F, Gewaltig M, Körner E, Palm G (2012) Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front Comput Neurosci 6, article 55. doi: 10.3389/fncom.2012.00055.
  84. Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127–144PubMedGoogle Scholar
  85. Kozloski J, Cecchi G (2008) Topological effects of synaptic spike timing-dependent plasticity. http://arxiv.org/abs/0810.0029
  86. Kozloski J, Cecchi G (2010) A theory of loop formation and elimination by spike timing-dependent plasticity. Frontiers in Neural Circuits 4(7):1–11Google Scholar
  87. Krone G, Mallot H, Palm G, Schüz A (1986) Spatio-temporal receptive fields: a dynamical model derived from cortical architectonics. Proc R Soc London B 226:421–444Google Scholar
  88. Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. J TINS 32(3):178–186. doi: 10.1016/j.tins.2008.12.002 Google Scholar
  89. Legéndy CR (1967) On the scheme by which the human brain stores Information. Math Biosci 1:55Google Scholar
  90. Legéndy CR (1975) Three principles of brain function and structure. Int J Neursci 6:237Google Scholar
  91. Levitt J, Lund J (2002) Intrinsic connections in mammalian cerebral cortex. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 133–154Google Scholar
  92. Levy N, Horn D, Meilijson I, Ruppin E (2001) Distributed synchrony in a cell assembly of spiking neurons. Neural Netw 14:815–824PubMedGoogle Scholar
  93. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–387. doi: 10.1038/nature11028 PubMedCentralPubMedGoogle Scholar
  94. Lubenov E, Siapas A (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58:118–131PubMedGoogle Scholar
  95. Markert H, Knoblauch A, Palm G (2005) Detecting sequences and understanding language with neural associative memories and cell assemblies. In: Wermter S, Palm G, Elshaw M (eds) Biomimetic neural learning for intelligent robots. LNAI 3575, Springer, Berlin, pp 107–117Google Scholar
  96. Markert H, Palm G (2006) An approach to language understanding and contextual disambiguation in human-robot interaction. In: Proc. ECAI International Workshop on Neural-Symbolic Learningand Reasoning (NeSy 2006), pp 23–35.Google Scholar
  97. Markert H, Knoblauch A, Palm G (2007) Modelling of syntactical processing in the cortex. BioSystems 89:300–315PubMedGoogle Scholar
  98. Markert H, Kayikci ZK, Palm G (2008) Sentence understanding and learning of new words with large-scale neural networks. In: Prevost L, Marinai S, Schwenker F (eds) Artificial Neural Networks in Pattern Recognition (ANNPR 2008). LNAI 5064. Springer Berlin, Heidelberg, pp 217–227Google Scholar
  99. Markert H, Kaufmann U, Palm G (2009) Neural associative memories for the integration of language, vision and action in an autonomous agent. Neural Netw 22:134–143PubMedGoogle Scholar
  100. Markram H, Lübke J, Frotscher M, Sakman B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedGoogle Scholar
  101. Marr D (1969) A Theory of cerebellar cortex. J Physiol 202:437PubMedCentralPubMedGoogle Scholar
  102. Marr D (1970) A theory of cerebellar neocortex. Proc R Soc London Ser B 176:161Google Scholar
  103. Marr D (1971) Simple memory. Philos Trans R Soc London Ser B 262:23Google Scholar
  104. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115Google Scholar
  105. Miles R, Wong RKS (1986) Excitatory synaptic interactions between CA3 neurones in the Guinea-pig hippocampus. J Physiol 373:397–418PubMedCentralPubMedGoogle Scholar
  106. Miller R (1996) Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol Cybern 75:263–275PubMedGoogle Scholar
  107. Miller R (2000) Time and the brain. Taylor and Francis.Google Scholar
  108. Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467PubMedGoogle Scholar
  109. Nieuwenhuys R (2013) The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218:303–352PubMedGoogle Scholar
  110. Palm G (1980) On associative memory. Biol Cybern 36:19–31PubMedGoogle Scholar
  111. Palm G (1981) Towards a theory of cell assemblies. Biol Cybern 39:181–194PubMedGoogle Scholar
  112. Palm G (1982a) Neural assemblies. An alternative approach to artificial intelligence. Springer, BerlinGoogle Scholar
  113. Palm G (1982b) Rules for synaptic changes and their relevance for the storage of information in the brain. In: Trappl R (ed) Cybernetics and systems research. North-Holland Publishing Company, AmsterdamGoogle Scholar
  114. Palm G, Aertsen A (eds) (1986) Brain theory. Springer, BerlinGoogle Scholar
  115. Palm G (1987a) On associative memories. In: Caianiello ER (ed) Physics of cognitive processes. World Scientific Publishers, Singapore, pp 380–422Google Scholar
  116. Palm G (1987b) Associative memory and threshold control in neural networks. In: Casti JL, Karlqvist A (eds) Real brains -artificial minds. North-Holland, AmsterdamGoogle Scholar
  117. Palm G (1990a) Cell assemblies as a guideline for brain research. Concepts Neurosci 1:133–148Google Scholar
  118. Palm G (1990b) Local learning rules and sparse coding in neural networks. In: Eckmiller R (ed) Advanced neural computers. North-Holland, AmsterdamGoogle Scholar
  119. Palm G, Sommer FT (1992) Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network 3:177–186Google Scholar
  120. Palm G (1993a) On the internal structure of cell assemblies. In: Aersten A (ed) Brain theory. Elsevier, Amsterdam, pp 261–270Google Scholar
  121. Palm G (1993b) Cell assemblies, coherence and cortico-hippocampal interplay. Special Issue Nitsch R, Ohm TG (eds), Hippocampus 3(1):219–225Google Scholar
  122. Palm G, Schwenker F, Sommer F (1994) Associative memory networks and sparse similarity preserving codes. In: Cherkassky V, Friedman JH, Wechsler H (eds) From statistics to neural networks: theory and pattern recognition applications. NATO-ASI Series F. Springer, Berlin, pp 283–302Google Scholar
  123. Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171. doi: 10.1016/j.neunet.2012.08.013 PubMedGoogle Scholar
  124. Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area I. General description. J Neurocytol 5: 63–84Google Scholar
  125. Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682PubMedGoogle Scholar
  126. Picado-Muino D, Borgelt Ch, Berger D, Gerstein G, Grün S (2013) Finding neural assemblies with frequent item set mining. Front Neuroinf 7(9) 10.3389/fninf.2013.00009
  127. Poort J, Raudies F, Wanning A, Lamme VAF, Neumann H, Roelfsema PR (2012) Neuron 75:143–156. doi: 10.1016/j.neuron.2012.04.032 PubMedGoogle Scholar
  128. Potjans TC, Diesmann M (2012) The cell-type specific microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex. doi: 10.1093/cercor/bhs358 PubMedCentralPubMedGoogle Scholar
  129. Pulvermüller F (2002) The neuroscience of language. On brain circuits of words and serial order. Cambridge University Press, CambridgeGoogle Scholar
  130. Rao RP., Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. NatureGoogle Scholar
  131. Rao RP (2005) Hierarchical Bayesian inference in networks of spiking neurons. In: Saul IK, Weiss Y, Bottou L (eds) Advances in neural information processing systems.17. MIT Press, CambridgeGoogle Scholar
  132. Raudies F, Neumann H (2010) A neural model of the temporal dynamics of figure-ground segregation in motion perception. Neural Netw 23:160–176. doi: 10.1016/j.neunet.2009.10.005 PubMedGoogle Scholar
  133. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD (2010) The asynchronous state in cortical circuits. Science 327:587–590PubMedCentralPubMedGoogle Scholar
  134. Rockland KS (2004) Feedback connections: splitting the arrow. In: Kaas J, Collins EC (eds) The primate visual system. CRC Press, Boca Raton, pp 387–405Google Scholar
  135. Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedGoogle Scholar
  136. Rockland KS, Virga A (1989) Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: a study using immunohistochemistry of anterogradely transported phaseolus vulgaris-leucoagglutinin. J Comp Neurol 285(1):54–72PubMedGoogle Scholar
  137. Russel SJ, Narvig P (2003) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle RiverGoogle Scholar
  138. Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483PubMedGoogle Scholar
  139. Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455PubMedGoogle Scholar
  140. Schüz A, Braitenberg V (2002) The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 377–385Google Scholar
  141. Schüz A, Chaimow D, Liewald D, Dortenmann M (2006) Quantitative aspects of corticocortical connecctions: a tracer study in the mouse. Cerebral Cortex 16:1474–1486. doi: 10.1093/cercor/bhj085 PubMedGoogle Scholar
  142. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedGoogle Scholar
  143. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedGoogle Scholar
  144. Schwenker F, Sommer FT, Palm G (1996) Iterative retrieval of sparsely coded associative memory patterns. Neural Netw 9(3):445–455Google Scholar
  145. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422PubMedCentralPubMedGoogle Scholar
  146. Shtyrov Y, Smith M, Horner AJ, Henson R, Nathan PJ, Bullmore ET, Pulvermüller F (2012) Attention to language: novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia. doi: 10.1016/j.neuropsychologia.2012.07.012
  147. Softky W (1995) Simple codes versus efficient codes. Curr Opin Neurobiol 5:239–247PubMedGoogle Scholar
  148. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedGoogle Scholar
  149. Spruston N (2009) Pyramidal neuron. Scholarpedia 4(5):6130Google Scholar
  150. Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. TINS 28(7):387–394PubMedGoogle Scholar
  151. Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cerebral Cortex 18:13–28. doi: 10.1093/cercor/bhm027 PubMedGoogle Scholar
  152. Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R (2001) Advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac). Philos Trans R Soc London B Biol Sci 356:1159–1186PubMedCentralPubMedGoogle Scholar
  153. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeGoogle Scholar
  154. Szatmáry B, Izhikevich EM (2010) Spike-timing theory of working memory. PLoS Comput Biol 6(8):e1000879. doi: 10.1371/journal.pcbi.1000879 PubMedCentralPubMedGoogle Scholar
  155. Thomson AM, Deuschars J (1994) Temporal and spatial properties of local circuits in neocortex. TINS 17(1):119–126PubMedGoogle Scholar
  156. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522PubMedGoogle Scholar
  157. Turing AM (1936) On computable numbers with an application to the Entscheidungsproblem. Proc of the London Math Soc 2, 42:230–265, 43:544–546Google Scholar
  158. Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643PubMedGoogle Scholar
  159. Van Rullen R, Thorpe SJ (2001) The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 13(4):454–461Google Scholar
  160. Voges N, Schüz A, Aertsen A, Rotter S (2010) A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Progr in Neurobiol 92:277–292Google Scholar
  161. Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–468Google Scholar
  162. Wallace DJ, Kerr JND (2010) Chasing the cell assembly. Curr Opin Neurobiol 20:296–305PubMedGoogle Scholar
  163. Waydo S, Kraskov A, Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial temporal lobe. J Neurosci 26(40):10232–10234PubMedGoogle Scholar
  164. Weidenbacher U, Neumann H (2009) Extraction of surface-related features in a recurrent model of V1–V2 interactions. PLoS ONE 4(6):e5909PubMedCentralPubMedGoogle Scholar
  165. Wennekers Th, Sommer FT, Palm G (1995) Iterative retrieval in associative memories by threshold control of different neural models. In: Hermann HJ (ed) Proceedings of the workshop on supercomputers in brain research. World Scientific Publishing Company, SingaporeGoogle Scholar
  166. Wennekers Th, Palm G (1996) Controlling the speed of synfire chains. In: von der Malsburg C et al. (eds) Artificial neural networks - ICANN 96. Proceedings international conference, Bochum, July 1996. LNCS 1112, Springer, Berlin, pp 451–456Google Scholar
  167. Wennekers Th (1998) Synfire graphs: from spike patterns to automata of spiking neurons. UIB-1998–08Google Scholar
  168. Wennekers Th, Palm G (1999) How imprecise is neuronal synchronization? Neurocomputing 26–27:579–585Google Scholar
  169. Wennekers Th (2006) Operational cell assemblies as a paradigm for brain-inspired future computing architectures. Neural Inf Process Lett Rev 10(4–6):135–145Google Scholar
  170. Wennekers Th, Palm G (2007) Modelling generic cognitive functions with operational Hebbian cell assemblies. In: Weiss ML (ed) Neural network research horizons. Nova Science Publishers, HauppaugeGoogle Scholar
  171. Wennekers Th, Palm G (2009) Syntactic sequencing in Hebbian cell assemblies. Cogn Neurodyn 3(4):429–441. doi: 10.1007/s11571-009-9095-z
  172. White EL (1989) Cortical circuits, synaptic organization of the cerebral cortex. Structure, function, and theory. Birkhäuser, BostonGoogle Scholar
  173. Winston PH (1984) Artificial intelligence. Addison-Wesley, BostonGoogle Scholar
  174. Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040PubMedGoogle Scholar
  175. Wolff JR (1976) Quantitative analysis of topography and development of synapses in the visual cortex. Exp Brain Res Suppl 1:259–263 Google Scholar
  176. Yen S, Baker J, Gray C (2007) Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97:1326–1341PubMedGoogle Scholar
  177. Young MP, Scannell JW, Burns GACP (1995) The analysis of cortical connectivity. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Günther Palm
    • 1
  • Andreas Knoblauch
    • 2
    • 3
  • Florian Hauser
    • 1
  • Almut Schüz
    • 4
  1. 1.Institute of Neural Information ProcessingUniversity of UlmUlmGermany
  2. 2.Honda Research Institute Europe GmbHOffenbach/MainGermany
  3. 3.Engineering FacultyAlbstadt-Sigmaringen UniversityAlbstadtGermany
  4. 4.MPI for Biological CyberneticsTübingenGermany

Personalised recommendations