Biological Cybernetics

, Volume 107, Issue 5, pp 513–527 | Cite as

A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion

  • L. Manfredi
  • T. Assaf
  • S. Mintchev
  • S. Marrazza
  • L. Capantini
  • S. Orofino
  • L. Ascari
  • S. Grillner
  • P. Wallén
  • Ö. Ekeberg
  • C. Stefanini
  • P. Dario
Original Paper

Abstract

The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications.

Keywords

Bioinspired autonomous robot Lamprey-like robot Goal-directed locomotion Muscle-like actuation Compliant robot Distributed control 

References

  1. Albu-Schaffer A, Ott C, Hirzinger G (2007) A unified passivity based control framework for position, torque and impedance control of flexible joint robots. Int J Rob Res 26(1):23–39CrossRefGoogle Scholar
  2. Arkin RC (1998) Social behaviour. In: Behaviour-based robotics. MIT Press, Cambridge, MassachusettsGoogle Scholar
  3. Ascari L, Bertocchi U, Corradi P, Laschi C (2009) Bio-inspired grasp control in a robotic hand with massive sensorial input. Biol Cybern 100(2):109–128PubMedCrossRefGoogle Scholar
  4. Ayers J, Wilbur C, Olcott C (2000) Lamprey robots. In: Wu, T, Kato, N (ed) In: Proceedings of the international symposium on aqua biomechanisms. Tokai UniversityGoogle Scholar
  5. Bar-Cohen Y (2012) Nature as a model for mimicking and inspiration of new technologies. Int J Aeronaut Space Sci 13(1):1–13Google Scholar
  6. Barranco F, Diaz J, Ros E, Del Pino B (2009) Visual system based on artificial retina for motion detection. Trans Cybern IEEE 39(3):752–762CrossRefGoogle Scholar
  7. Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically inspired approaches to robotics. Commun ACM 40(3):31–38CrossRefGoogle Scholar
  8. Bradski G, Kaehler A (2008) Learning openCV computer vision with the openCV library. O’Reilly Media, USAGoogle Scholar
  9. Chiel H, Ting L, Ekeberg Ö, Hartmann M (2009) The brain in its body—motor control and sensing in a biomechanical context. J Neurosci 29:12807–12814PubMedCrossRefGoogle Scholar
  10. Crespi A, Ijspeert AJ (2009) Salamandra robotica: a biologically inspired amphibious robot that swims and walks. In: Springer (ED) Artificial life models in hardware, pp 35–64Google Scholar
  11. Durr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33(3):237–250PubMedCrossRefGoogle Scholar
  12. Ekeberg Ö (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69:363–374Google Scholar
  13. Ekeberg Ö, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Philos Trans R Soc Lond B 354:895–902CrossRefGoogle Scholar
  14. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586PubMedCrossRefGoogle Scholar
  15. Grillner S, Graybiel AM (2006) Microcircuits—the interface between neurons and global brain function. Massachusetts MIT Press, CambridgeGoogle Scholar
  16. Grillner S, Jessell TM (2009) Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19:572–586PubMedCrossRefGoogle Scholar
  17. Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Kotaleski JH (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. In: Cisek P, Drew T, Kalaska JF (eds) Progress in brain research, vol 165. Elsevier, pp 221–234. ISSN 0079-6123, ISBN 9780444528230Google Scholar
  18. Hardisty MW (1986) Petromyzontiforma. In: Holcik J (ed) The freshwater fishes of Europe. Aula-Verlag, WiesbadenGoogle Scholar
  19. Hardisty MW, Potter IC (1971) The biology of lampreys. Academic Press, LondonGoogle Scholar
  20. Hirose S, Yamada H (2009) Snake-like robots [Tutorial]. Rob Autom Mag IEEE 16(1):88–98CrossRefGoogle Scholar
  21. Hochhalter D (2011) Artificially produced spider silk fibers as a high tech biological material. Basic Biotechnol 7:12–16Google Scholar
  22. Hu Y, Katragadda RB, Hongen T, Zheng Q, Li Y, Xu Y (2010) Bioinspired 3-D tactile sensor for minimally invasive surgery. J Microelectromech Syst 19(6):1400–1408CrossRefGoogle Scholar
  23. Hunter I, Lafontaine S (1992) A comparison of muscle with artificial actuators. In: Workshop solid state sensors actuators, 5th technical digest IEEE 22–25 June 1992, pp 178–185Google Scholar
  24. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653PubMedCrossRefGoogle Scholar
  25. Islam SS, Zelenin PV, Orlovsky GN, Grillner S, Deliagina TG (2006) Pattern of motor coordination underlying backward swimming in the lamprey. J Neurophysiol 96:451–460PubMedCrossRefGoogle Scholar
  26. Kawato M (2000) Robotics as a tool for neuroscience: cerebellar internal models for robotics and cognition. In: Hollerbach MH, Koditschek DE (eds) Robotics research. The ninth international symposium. Springer, London, pp 321–328Google Scholar
  27. Laine A, Kamula R, Hooli J (1998) Fish and lamprey passage in a combined Denil and vertical slot fishway. Fish Manag Ecol 5(4):31–44CrossRefGoogle Scholar
  28. Li F, Liu W, Fu X, Bonsignori G, Scarfogliero U, Stefanini C, Dario P, (2012) Jumping like an insect: design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration. Mechatronics 22(2):167–176. ISSN 0957-4158Google Scholar
  29. Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. Ocean Eng IEEE J 29(3):706–728CrossRefGoogle Scholar
  30. Manfredi L, Maini ES, Dario P, Laschi C, Girard B, Tabareau N, Berthoz A (2006) Implementation of a neurophysiological model of saccadic eye movements on an anthropomorphic robotic head. Humanoid Robots, 6th IEEE-RAS international conference on, pp 438–443Google Scholar
  31. Manfredi L, Maini E S, Laschi C (2009) Neurophysiological models humanoid robotics of gaze control in humanoid robotics. In: Choi B (ed) Humanoid robots, pp 187–212Google Scholar
  32. Mazzolai B, Mondini A, Corradi P, Laschi C, Mattoli V, Sinibaldi E, Dario P (2011) A miniaturized mechatronic system inspired by plant roots for soil exploration. Trans Mechatron IEEE/ASME 16(2):201–212 Google Scholar
  33. Ott C, Albu-Schaffer A, Kugi A, Hirzinger G (2008) On the passivity based impedance control of flexible joint robots. IEEE Trans Rob Autom 24(2):416–429Google Scholar
  34. Park Y, Jeong U, Lee J, Kwon S, Kim H, Cho K (2012) Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin. Rob IEEE Trans 28(6):1216–1227Google Scholar
  35. Pfeifer R, Iida F, Bongard J (2005) New robotics design principles for intelligent systems artificial life, vol 11. MIT Press, Cambridge MA USAGoogle Scholar
  36. Pratt G, Williamson M (1995) Series elastic actuators. In: Proceedings IEEE/RSJ international conference on human robot interaction and cooperative robots, vol 1, pp 399–406Google Scholar
  37. Rovainen CM (1979) Neurobiology of lampreys. Physiol Rev 59:1007–1077PubMedGoogle Scholar
  38. Saitoh K, Menard A, Grillner S (2007) Tectal control of locomotion, steering, and eye movements in lamprey. J Neurophysiol 97(4):3093–3108PubMedCrossRefGoogle Scholar
  39. Scarfogliero U, Stefanini C, Dario P (2009) The use of compliant joints and elastic energy storage in bio-inspired legged robots. Mechan Mach Theory 44(3):580–590CrossRefGoogle Scholar
  40. Stefanini C, Orofino S, Manfredi L, Mintchev S, Marrazza S, Assaf T, Capantini L, Sinibaldi E, Grillner S, Wallén P, Dario P (2012) A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir Biomim 7(2):1748–3190CrossRefGoogle Scholar
  41. Stefanini C, Mintchev S, Dario P (2011) Permanent magnet actuator for adaptive actuation. US Patent US20110266904, 2011Google Scholar
  42. Webb B (2000) What does robotics offer animal behaviour? Animal Behav 60:545–558CrossRefGoogle Scholar
  43. Webb B, Consi T (2001) Biorobotics: methods and applications. AAAI/MIT Press, Cambridge, MAGoogle Scholar
  44. Webb B (2001) Can robots make good models of biological behaviour? Behav Brain Sci 24(6):1033–1050PubMedGoogle Scholar
  45. Webb B (2008) Using robots to understand animal behaviour. Adv Study Behav 38:1–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Manfredi
    • 1
  • T. Assaf
    • 2
  • S. Mintchev
    • 3
  • S. Marrazza
    • 3
  • L. Capantini
    • 4
  • S. Orofino
    • 3
  • L. Ascari
    • 5
  • S. Grillner
    • 4
  • P. Wallén
    • 4
  • Ö. Ekeberg
    • 6
  • C. Stefanini
    • 3
  • P. Dario
    • 3
  1. 1.Institute for Medical Science and Technology (IMSaT)University of DundeeDundeeUK
  2. 2.Bristol Robotics LaboratoryBristolUK
  3. 3.The BioRobotics InstituteScuola Superiore Sant’Anna (SSSA)Pontedera (Pisa)Italy
  4. 4.Department of Neuroscience, Nobel Institute for NeurophysiologyKarolinska Institutet (KI)StockholmSweden
  5. 5.HENESIS srlParmaItaly
  6. 6.Department of Computational Biology, School of Computer Science and CommunicationRoyal Institute of TechnologyStockholmSweden

Personalised recommendations