Biological Cybernetics

, Volume 107, Issue 2, pp 233–245 | Cite as

Evidence of muscle synergies during human grasping

Original Paper

Abstract

Motor synergies have been investigated since the 1980s as a simplifying representation of motor control by the nervous system. This way of representing finger positional data is in particular useful to represent the kinematics of the human hand. Whereas, so far, the focus has been on kinematic synergies, that is common patterns in the motion of the hand and fingers, we hereby also investigate their force aspects, evaluated through surface electromyography (sEMG). We especially show that force-related motor synergies exist, i.e. that muscle activation during grasping, as described by the sEMG signal, can be grouped synergistically; that these synergies are largely comparable to one another across human subjects notwithstanding the disturbances and inaccuracies typical of sEMG; and that they are physiologically feasible representations of muscular activity during grasping. Potential applications of this work include force control of mechanical hands, especially when many degrees of freedom must be simultaneously controlled.

Keywords

Rehabilitation robotics Grasping  Electromyography 

References

  1. Arbib M, Metta G, van der Smagt P (2008) Neurorobotics: from vision to action, Chap. 62. Springer, Berlin, pp 1453–1480Google Scholar
  2. Atzori M, Gijsberts A, Heynen S, Mittaz-Hager AG, Deriaz O, van der Smagt P, Castellini C, Caputo B, Müller H (2012) Building the NINAPRO database: a resource for the biorobotics community. In: Proceedings of BioRob—IEEE international conference on biomedical robotics and biomechatronics, pp 1258–1265Google Scholar
  3. Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, OxfordGoogle Scholar
  4. Bicchi A, Gabiccini M, Santello M (2011) Modelling natural and artificial hands with synergies. Philos Trans R Soc London. Ser B, Biol Sci 366(1581):3153–3161. doi:10.1098/rstb.2011.0152 CrossRefGoogle Scholar
  5. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of the 5th annual ACM workshop on computational learning theory, ACM press, pp 144–152Google Scholar
  6. Brochier T, Spinks RL, Umiltà MA, Lemon RN (2004) Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J Neurophysiol 92(3):1770–1782Google Scholar
  7. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2(2):955–974Google Scholar
  8. Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control of mechanical hands. J Neuroeng Rehabil 6(41). doi:10.1186/1743-0003-6-41.
  9. Castellini C, Gruppioni E, Davalli A, Sandini G (2009) Fine detection of grasp force and posture by amputees via surface electromyography. JPhysiol 103(3–5):255–262. doi:10.1016/j.jphysparis.2009.08.008 Google Scholar
  10. Castellini C, van der Smagt P (2009) Surface EMG in advanced hand prosthetics. Biol Cybern 100(1):35–47. doi:10.1007/s00422-008-0278-1 PubMedCrossRefGoogle Scholar
  11. Castellini C, van der Smagt P (2011) Preliminary evidence of dynamic muscular synergies in human grasping. In: Proceedings of ICAR—international conference on, advanced robotics, pp 28–33 doi:10.1109/ICAR.2011.6088612
  12. Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosén B, Carrozza M, Sebelius F (2011) Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans Neural Syst Rehabi Eng 19(3):260–270. doi:10.1109/TNSRE.2011.2108667 CrossRefGoogle Scholar
  13. Cutkosky M (1989) On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transa Robot Autom 5(3): 269–279Google Scholar
  14. De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13(2):135–163Google Scholar
  15. De Luca CJ (2002) Surface electromyography: detection and recording. Copyright 2002 by DelSys, Inc.Google Scholar
  16. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2 edn. Wiley, New YorkGoogle Scholar
  17. Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic hand-arm system. Adv Robot 22(1):39–55. doi:10.1163/156855308X291836 Google Scholar
  18. Grinyagin IV, Biryukova EV, Maier MA (2005) Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 94(4):2284–2294PubMedCrossRefGoogle Scholar
  19. Nawab HS, Wotiz RP, De Luca CJ (2008) Decomposition of indwelling EMG signals. J Appl Physiol 105:700–710PubMedCrossRefGoogle Scholar
  20. Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146(2):233–243PubMedCrossRefGoogle Scholar
  21. Kang SB, Ikeuchi K (1993) A grasp abstraction hierarchy for recognition of grasping tasks from observation. Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, YokohamaGoogle Scholar
  22. Lang CE, Schieber MH (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol 92(5):2802–2810PubMedCrossRefGoogle Scholar
  23. Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci USA 91(16):7534–7538Google Scholar
  24. Nilsson J (2004) Implementing a continuously updating, high-resolution time provider for windows. The MSDN MagazineGoogle Scholar
  25. Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G (2009) Model adaptation with least-squares SVM for hand prosthetics. In: Proceedings of ICRA—International Conference on Robotics and Automation, pp 2897–2903 doi:10.1109/ROBOT.2009.5152247.
  26. Overduin SA, d’Avella A, Roh J, Bizzi E (2008) Modulation of muscle synergy recruitment in primate grasping. J Neurosci 28(4):880–892Google Scholar
  27. Santello M, Flanders M, Soechting JF (1998) Postural synergies for tool use. Neuroscience 17:10105–10115Google Scholar
  28. Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. Neuroscience 22(4):1426–1435PubMedGoogle Scholar
  29. Sebelius FCP, Rosén BN, Lundborg GN (2005) Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg 30(4):780–789Google Scholar
  30. Stillfried G, van der Smagt P (2010) Movement model of a human hand based on magnetic resonance imaging (MRI). International Conference on Applied Bionics and Biomechanics (ICABB), VeniceGoogle Scholar
  31. Takei T, Seki K (2010) Spinal interneurons facilitate coactivation of hand muscles during a precision grip task in monkeys. J Neurosci 30(50):17041–17050Google Scholar
  32. Tenore FV, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV (2009) Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng 56(5): 1427–1434PubMedCrossRefGoogle Scholar
  33. Tommasi T, Orabona F, Castellini C, Caputo B (2012) Improving control of dexterous hand prostheses using adaptive learning. IEEE Transactions on Robotics. doi:10.1109/TRO.2012.2226386
  34. Tsuji H, Ichinobe H, Ito K, Nagamachi M (1993) Discrimination of forearm motions from emg signals by error back propagation typed neural network using entropy. IEEE Trans Soc Instrum Control Eng 29(10):1213–1220Google Scholar
  35. Vapnik VN (1998) Stat Learn Theory. Wiley, New YorkGoogle Scholar
  36. Vogel J, Castellini C, van der Smagt P (2011) EMG-based teleoperation and manipulation with the DLR LWR-III. In: Proceedings of IROS —international conference on intelligent robots and systems, pp 672–678. doi:10.1109/IROS.2011.6048345
  37. Wimböck T, Jahn B, Hirzinger G (2011) Synergy level impedance control for multifingered hands. In: Intelligent robots and systems (IROS), 2011 IEEE/RSJ International Conference on, pp 973–979Google Scholar
  38. Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30(4–6):459–485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.DLR / German Aerospace CenterInstitute of Robotics and MechatronicsWesslingGermany
  2. 2.Institute of Computer Science VI Technische Universität MünchenGarchingGermany

Personalised recommendations