Biological Cybernetics

, Volume 107, Issue 1, pp 83–94 | Cite as

Towards a large-scale model of patient-specific epileptic spike-wave discharges

  • Peter Neal Taylor
  • Marc Goodfellow
  • Yujiang Wang
  • Gerold Baier
Original Paper

Abstract

Clinical electroencephalographic (EEG) recordings of the transition into generalised epileptic seizures show a sudden onset of spike-wave dynamics from a low-amplitude irregular background. In addition, non-trivial and variable spatio-temporal dynamics are widely reported in combined EEG/fMRI studies on the scale of the whole cortex. It is unknown whether these characteristics can be accounted for in a large-scale mathematical model with fixed heterogeneous long-range connectivities. Here, we develop a modelling framework with which to investigate such EEG features. We show that a neural field model composed of a few coupled compartments can serve as a low-dimensional prototype for the transition between irregular background dynamics and spike-wave activity. This prototype then serves as a node in a large-scale network with long-range connectivities derived from human diffusion-tensor imaging data. We examine multivariate properties in 42 clinical EEG seizure recordings from 10 patients diagnosed with typical absence epilepsy and 50 simulated seizures from the large-scale model using 10 DTI connectivity sets from humans. The model can reproduce the clinical feature of stereotypy where seizures are more similar within a patient than between patients, essentially creating a patient-specific fingerprint. We propose the approach as a feasible technique for the investigation of patient-specific large-scale epileptic features in space and time.

Keywords

Epilepsy EEG Mathematical modelling Spatio-temporal patterns Spike-wave Diffusion-tensor imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2012_534_MOESM1_ESM.pdf (278 kb)
ESM 1 (PDF 278 kb)

ESM 2 (MOV 36,720 kb)

References

  1. Aarabi A, Wallois F, Grebe R (2008) Does spatiotemporal synchronization of EEG change prior to absence seizures?. Brain Res 1188: 207–221PubMedCrossRefGoogle Scholar
  2. Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2): 77–87PubMedCrossRefGoogle Scholar
  3. Amor F, Rudrauf D, Navarro V, Ndiaye K, Garnero L, Martinerie J, LeVanQuyen M (2005) Imaging brain synchrony at high spatio-temporal resolution: application to MEG signals during absence seizures. Signal Process 85(11): 2101–2111CrossRefGoogle Scholar
  4. Babajani-Feremi A, Soltanian-Zadeh H (2010) Multi-area neural mass modeling of EEG and MEG signals. NeuroImage 52(3): 793–811PubMedCrossRefGoogle Scholar
  5. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30(17): 5884PubMedCrossRefGoogle Scholar
  6. Benjamin O, Fitzgerald THB, Ashwin P, Tsaneva-Atanasova K, howdhury F, Richardson MP, Terry JR (2012) A phenomenological model of seizure initiation suggests net-work structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosc 2(1):1Google Scholar
  7. Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46:21–33Google Scholar
  8. Bojak I, Oostendorp TF, Reid AT, Kotter R (2010) Connecting mean field models of neural activity to EEG fMRI data. Brain Topogr 23(2): 139–149PubMedCrossRefGoogle Scholar
  9. Borisyuk GN, Borisyuk RM, Khibnik AI, Roose D (1995) Dynamics and bifurcations of two coupled neural oscillators with different connection types. Bull Math Biol 57(6): 809–840PubMedGoogle Scholar
  10. Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc B Biol Sci 360(1457): 1051–1074CrossRefGoogle Scholar
  11. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296Google Scholar
  12. Brown G, Pocock A, Zhao M, Lujan M (2011) Conditional likelihood maximisation: a unifying framework for mutual information feature selection. J Mach Learn Res 13: 26–46Google Scholar
  13. Cohn R, Leader HS (1967) Synchronization characteristics of paroxysmal EEG activity. Electroencephalogr Clin Neurophysiol 22(5): 421–428PubMedCrossRefGoogle Scholar
  14. Cosandier-Rimele D, Merlet I, Bartolomei F, Badier JM, Wendling F (2010) Computational modeling of epileptic activity: from cortical sources to EEG signals. J Clin Neurophysiol 27(6):465Google Scholar
  15. David O, Friston KJ (2003) A neural mass model for MEG EEG: coupling and neuronal dynamics. NeuroImage 20(3): 1743–1755PubMedCrossRefGoogle Scholar
  16. David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21(2): 659–673PubMedCrossRefGoogle Scholar
  17. David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. NeuroImage 25(3): 756–770PubMedCrossRefGoogle Scholar
  18. Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106(25):10302Google Scholar
  19. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1): 43–56PubMedCrossRefGoogle Scholar
  20. Eeckman FH, Freeman WJ (1991) Asymmetric sigmoid non-linearity in the rat olfactory system. Brain Res 557(1–2): 13–21PubMedCrossRefGoogle Scholar
  21. Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS (2008) Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. NeuroImage 40(2): 728–737PubMedCrossRefGoogle Scholar
  22. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4): 1273–1302PubMedCrossRefGoogle Scholar
  23. Garcia-Dominguez L, Wennberg RA, Gaetz W, Cheyne D, Snead OC, Velazquez JLP (2005) Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J Neurosci 25(35):8077Google Scholar
  24. Goodfellow M, Schindler K, Baier G (2011) Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. NeuroImage 55(3): 920–932PubMedCrossRefGoogle Scholar
  25. Goodfellow M, Schindler K, Baier G (2012a) Self-organised transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage 59(3): 2644–2660PubMedCrossRefGoogle Scholar
  26. Goodfellow M, Taylor PN, Wang Y, Garry DJ, Baier G (2012b) Modelling the role of tissue heterogeneity in epileptic rhythms. Eur J Neurosci 36(2): 2178–2187PubMedCrossRefGoogle Scholar
  27. Holmes MD, Brown M, Tucker DM (2004) Are generalized seizures truly generalized evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45(12): 1568–1579PubMedCrossRefGoogle Scholar
  28. Honey CJ, Sporns O (2008) Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 29(7): 802–809PubMedCrossRefGoogle Scholar
  29. Hughes JR (2009) Absence seizures: a review of recent reports with new concepts. Epilepsy Behav 15(4): 404–412PubMedCrossRefGoogle Scholar
  30. Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73(4): 357–366PubMedCrossRefGoogle Scholar
  31. Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E 62(6): 8462–8465CrossRefGoogle Scholar
  32. Jirsa VK, Sporns O, Breakspear M, Deco G, McIntosh AR (2010) Towards the virtual brain: network modeling of the intact and the damaged brain. Arch Ital Biol 148(3): 189–205PubMedGoogle Scholar
  33. Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG MEG with lead field parameterization. NeuroImage 30(4): 1273–1284PubMedCrossRefGoogle Scholar
  34. Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A Math Phys Eng Sci 367(1891):1145Google Scholar
  35. Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, Coenen AML, Lopesda Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosc 22(4):1480Google Scholar
  36. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49(9): 1510–1519PubMedCrossRefGoogle Scholar
  37. Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51(10): 2000–2010PubMedCrossRefGoogle Scholar
  38. Muircheartaigh JO, Vollmar C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy. Neurology 76(1): 34–40CrossRefGoogle Scholar
  39. Parker GJM, Stephan KE, Barker GJ, Rowe JB, MacManus DG, Wheeler-Kingshott CAM, Ciccarelli O, Passingham RE, Spinks RL, Lemon RN et al. (2002a) Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage 15(4):797–798Google Scholar
  40. Parker GJM, Wheeler-Kingshott CAM, Barker GJ (2002b) Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging 21(5): 505–512PubMedCrossRefGoogle Scholar
  41. Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-based probabilistic index of connectivity (pico) using a structural interpretation of mri diffusion measurements. J Magn Reson Imaging 18(2): 242–254PubMedCrossRefGoogle Scholar
  42. Pinault D, O’Brien TJ (2005) Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst 3(3):181Google Scholar
  43. Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4): 041924CrossRefGoogle Scholar
  44. Rodin E, Ancheta O (1987) Cerebral electrical fields during petit mal absences. Electroencephalogr Clin Neurophysiol 66(6): 457–466PubMedCrossRefGoogle Scholar
  45. Rodrigues S, Barton D, Marten F, Kibuuka M, Alarcon G, Richardson MP, Terry JR (2010) A method for detecting false bifurcations in dynamical systems: application to neural-field models. Biol Cybern 102(2): 145–154PubMedCrossRefGoogle Scholar
  46. Rose CJ, Morris D, Haroon H, Embleton K, Logothetis N, RalphLambon M, Parker GJ (2009) Piconmat.com version 2.0: a web-based probabilistic tractography data serviceGoogle Scholar
  47. Schindler K, Gast H, Stieglitz L, Stibal A, Hauf M, Wiest R, Mariani L, Rummel C (2011) Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures. Epilepsia 52:1771–1780Google Scholar
  48. Sherwin I (1967) Alterations in the non-specific cortical afference during hyperventilation. Electroencephalogr Clin Neurophysiol 23: 532–538PubMedCrossRefGoogle Scholar
  49. Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC (2007) Realistically coupled neural mass models can generate EEG rhythms. Neural Comput 19(2): 478–512PubMedCrossRefGoogle Scholar
  50. Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2): 467–484PubMedCrossRefGoogle Scholar
  51. Taylor PN, Baier G (2011) A spatially extended model for macroscopic spike-wave discharges. J Comput Neurosci 31(3): 679–684PubMedCrossRefGoogle Scholar
  52. Ursino M, Cona F, Zavaglia M (2010) The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage 52(3): 1080–1094PubMedCrossRefGoogle Scholar
  53. Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG fMRI fusion of brain oscillations. Hum Brain Mapp 30(9): 2701–2721PubMedCrossRefGoogle Scholar
  54. Wang Y, Goodfellow M, Taylor PN, Baier G (2012) A phase space approach for modelling of epileptic dynamics. Phys Rev E 85:061918Google Scholar
  55. Weir B (1965) The morphology of the spike-wave complex. Electroencephalogr Clin Neurophysiol 19(3): 284–290PubMedCrossRefGoogle Scholar
  56. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABA ergic dendritic inhibition. Eur J Neurosci 15(9): 1499–1508PubMedCrossRefGoogle Scholar
  57. Westmijse I, Ossenblok P, Gunning B, VanLuijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50(12): 2538– 2548PubMedCrossRefGoogle Scholar
  58. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1): 1–24PubMedCrossRefGoogle Scholar
  59. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q (2011) Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134(10): 2912–2928PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Neal Taylor
    • 1
  • Marc Goodfellow
    • 2
  • Yujiang Wang
    • 1
  • Gerold Baier
    • 1
  1. 1.Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  2. 2.Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA), School of MathematicsThe University of ManchesterManchesterUK

Personalised recommendations