Advertisement

Biological Cybernetics

, Volume 108, Issue 5, pp 527–539 | Cite as

Valentino Braitenberg: From neuroanatomy to behavior and back

  • Mario Negrello
Open Access
Review

Abstract

This article compiles an expose of Valentino Braitenberg’s singular view on neuroanatomy and neuroscience. The review emphasizes his topologically informed work on neuroanatomy and his dialectics of brain-based explanations of motor behavior. Some of his early ideas on topologically informed neuroanatomy are presented, together with some of his more obscure work on the taxonomy of neural fiber bundles and synaptic arborizations. His functionally informed interpretations of neuroanatomy of the cerebellum, cortex, and hippocampus, are introduced. Finally, we will touch on his philosophical views and the inextricable role of function in the explanation of neural behavior.

Keywords

Neuroscience Neuroanatomy History Braitenberg Behavioral function 

References

  1. Bower JM(2002) The organization of cerebellar cortical circuitry revisited: implications for function. Ann N Y Acad Sci 978:135–155PubMedCrossRefGoogle Scholar
  2. Braitenberg V (1954) Zur Frage der anatomischen Veränderungen des Gehirns bei Schizophrenic. Münchener Medizinische Wochenschrift 96:365–367PubMedGoogle Scholar
  3. Braitenberg V (1959) Morphology of nerve nets. Nuovo Cimento 13(2):521–531CrossRefGoogle Scholar
  4. Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156PubMedCrossRefGoogle Scholar
  5. Braitenberg V (1965) Taxis, kinesis and decussation. Prog Brain Res 17:1–13CrossRefGoogle Scholar
  6. Braitenberg V (1977) On the texture of brains: an introduction to neuroanatomy for the cybernetically minded. Springer, New YorkGoogle Scholar
  7. Braitenberg V: The concept of symmetry in neuroanatomy. N Y Acad Sci Ann 299, 186–196 (1977)CrossRefGoogle Scholar
  8. Braitenberg V (1978) Cortical architectonics: general and areal. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 443–465Google Scholar
  9. Braitenberg V: The cerebellum revisited. J Theoret Neurobiol 2, 237–241 (1983)Google Scholar
  10. Braitenberg V (1984) Vehicles: experiments in synthetic psychology. Bradford Books, CambridgeGoogle Scholar
  11. Braitenberg V (1987) The cerebellum and the physics of movement: some speculations. Cerebellum and neuronal plasticity. Plenum Press, New York, pp 193–208Google Scholar
  12. Braitenberg V (1991) Information from structure: a sketch of neuroanatomy. Phys Neural Netw 1:107–120Google Scholar
  13. Braitenberg V (1993) Intricacies of movement control: an essay. In: Aertsen A (ed) Brain theory. Elsevier, Oxford, pp 119–127Google Scholar
  14. Braitenberg V (1999) Structural symmetries of brains. Encyclopedia of neuroscience, 2nd edn. Elsevier, Oxford, pp 1–5Google Scholar
  15. Braitenberg V: Brain size and number of neurons: an exercise in synthetic neuroanatomy. J Comput Neurosci 10(1), 71–77 (2001)PubMedCrossRefGoogle Scholar
  16. Braitenberg V (2002) In defense of the cerebellum. Ann N Y Acad Sci 978:175–183Google Scholar
  17. Braitenberg V, Atwood R: Morphological observations on the cerebellar cortex. J Comp Neurol 109(1), 1 (1958)PubMedCrossRefGoogle Scholar
  18. Braitenberg V, Braitenberg C: Geometry of orientation columns in the visual cortex. Biol Cybern 33(3), 179–186 (1979)PubMedCrossRefGoogle Scholar
  19. Braitenberg V, Guglielmotti V, Sada E: Correlation of crystal growth with the staining of axons by the Golgi procedure. Biotech Histochem 42(6), 277–283 (1967)CrossRefGoogle Scholar
  20. Braitenberg V, Heck D, Sultan F (1997) The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci 20(2):229–245; discussion 245–277Google Scholar
  21. Braitenberg V,Kemali M(1970) Exceptions to bilateral symmetry in the epithalamus of lower vertebrates. J Comp Neurol 138(2):137–146PubMedCrossRefGoogle Scholar
  22. Braitenberg V., Schüz A (1983) Some anatomical comments on the Hippocampus. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, LondonGoogle Scholar
  23. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, New YorkGoogle Scholar
  24. Franzius M, Sprekeler H, Wiskott L: Slowness and sparesenss lead to place, head-directino, and spatial-view cells. PLoS Comput Biol 3(8), e166 (2007)PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jeffery KJ, Burgess N (2006) A metric for the cognitive map: found at last? Trends Cogn Sci 10(1):1–3Google Scholar
  26. Merleau-Ponty M (1963) The structure of behavior. Duquesne University Press, PhiladelphiaGoogle Scholar
  27. Negrello M: Invariants of behavior. Constancy and variability in neural systems. Springer, New York (2011)CrossRefGoogle Scholar
  28. O’Keefe J, Dostrovsky J: The hippocampus as spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res 34, 171–175 (1971)PubMedCrossRefGoogle Scholar
  29. Strausfeld N: Brain organization and the origin of insects: an assessment. Proc R Soc B 276(1664), 1929 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  30. Strausfeld N, Hansen L, Li Y, Gomez R, Ito K: Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5(1), 11–37 (1998)PubMedCentralPubMedGoogle Scholar
  31. Sultan F, Braitenberg V (1993) Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J Hirnforsch 34(1):79–92Google Scholar
  32. Wyss R, König P, Verschure PFMJ: Invariant representations of visual patterns in a temporal population code. Proc Natl Acad Sci USA 108(1), 324–329 (2003)CrossRefGoogle Scholar
  33. Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20(3):290–297Google Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Computational Neuroscience LaboratoryOkinawa Institute of Science and TechnologyOnna PrefectureJapan
  2. 2.Department of NeuroscienceErasmus MCRotterdamThe Netherlands

Personalised recommendations