Biological Cybernetics

, Volume 106, Issue 11–12, pp 741–755 | Cite as

Human hand modelling: kinematics, dynamics, applications

  • Agneta GustusEmail author
  • Georg Stillfried
  • Judith Visser
  • Henrik Jörntell
  • Patrick van der Smagt
Open Access


An overview of mathematical modelling of the human hand is given. We consider hand models from a specific background: rather than studying hands for surgical or similar goals, we target at providing a set of tools with which human grasping and manipulation capabilities can be studied, and hand functionality can be described. We do this by investigating the human hand at various levels: (1) at the level of kinematics, focussing on the movement of the bones of the hand, not taking corresponding forces into account; (2) at the musculotendon structure, i.e. by looking at the part of the hand generating the forces and thus inducing the motion; and (3) at the combination of the two, resulting in hand dynamics as well as the underlying neurocontrol. Our purpose is to not only provide the reader with an overview of current human hand modelling approaches but also to fill the gaps with recent results and data, thus allowing for an encompassing picture.


Human hand model Hand kinematics Muscle dynamics Tendon dynamics Cadaver studies 


  1. Alexander R (1992) The human machine. How the body works. Columbia University Press, New YorkGoogle Scholar
  2. Alstermark B, Isa T, Pettersson LG, Sasaki S (2007) The C3–C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol 189(2): 123–140CrossRefGoogle Scholar
  3. Alstermark B, Isa T, Tantisira B (1991) Integration in descending motor pathways controlling the forelimb in the cat. 18. Morphology, axonal projection and termination of collaterals from C3-C4 propriospinal neurones in the segment of origin. Exp Brain Res 84(3): 561–568PubMedGoogle Scholar
  4. An K, Chao E, Cooney W, Linscheid R et al (1979) Normative model of human hand for biomechanical analysis. J Biomech 12(10): 775–788PubMedCrossRefGoogle Scholar
  5. An K, Ueba Y, Chao E, Cooney W et al (1983) Tendon excursion and moment arm of index finger muscles. J Biomech 16(6): 419–425PubMedCrossRefGoogle Scholar
  6. Bishop CM (2006) Pattern recognition and machine learning. Springer, HeidelbergGoogle Scholar
  7. Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13(12): 5105–5118PubMedGoogle Scholar
  8. Buford WL, Koh S, Andersen CR, Viegas SF (2005) Analysis of intrinsic-extrinsic muscle function through interactive 3-dimensional kinematic simulation and cadaver studies. J Hand Surg 30(6): 1267–1275CrossRefGoogle Scholar
  9. Cerveri P, De Momi E, Lopomo N, Baud-Bovy G et al (2007) Finger kinematic modeling and real-time motion estimation. Ann Biomed Eng 35: 1989–2002PubMedCrossRefGoogle Scholar
  10. Cerveri P, Lopomo N, Pedotti A, Ferrigno G (2005) Derivation of centers of rotation for wrist and fingers in a hand kinematic model: methods and reliability results. Ann Biomed Eng 33: 402–412PubMedCrossRefGoogle Scholar
  11. Chang LY, Matsuoka Y (2006) A kinematic thumb model for the ACT hand. In: Proceedings of the IEEE international conference on robotics and automation (ICRA ’06), Orlando, pp 1000–1005Google Scholar
  12. Chang LY, Pollard NS (2007) Constrained least-squares optimization for robust estimation of center of rotation. J Biomech 40(6): 1392–1400PubMedCrossRefGoogle Scholar
  13. Chang LY, Pollard NS (2007) Robust estimation of dominant axis of rotation. J Biomech 40(12): 2707–2715PubMedCrossRefGoogle Scholar
  14. Chao E, Opgrande J, Axmear F (1976) Three-dimensional force analysis of finger joints in selected isometric hand functions. J Biomech 9(6): 387–396PubMedCrossRefGoogle Scholar
  15. Choi J (2008) Developing a 3-dimensional kinematic model of the hand for ergonomic analyses of hand posture, hand space envelope, and tendon excursion. Ph.D. thesis, University of MichiganGoogle Scholar
  16. Dempsey MF, Condon B, Hadley DM (2002) MRI safety review. Seminars in Ultrasound, CT, and MRI 23: 392–401PubMedCrossRefGoogle Scholar
  17. Dempsey PG, Ayoub MM (1994) An investigation of variables influencing sustained pinch strength and evaluation of inter-study variation in independent variable effects. In: Advances in industrial ergonomics and safety VI. Taylor and Francis, London, pp 601–608Google Scholar
  18. Dennerlein JT (2005) Finger flexor tendon forces are a complex function of finger joint movement and fingertip forces. J Hand Therapy 18: 120–127CrossRefGoogle Scholar
  19. Deshpande AD, Xu Z, Weghe M, Brown BH et al (2013) Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans Mechatron 18(1): 238–250CrossRefGoogle Scholar
  20. Dexmart (2009) Deliverable D1.1 kinematic model of the human hand. Tech. rep., DexmartGoogle Scholar
  21. Duchenne (de Boulogne) G (1867) Physiologie des mouvements démontrée à l’aide de l’expérimentation éléctrique et de l’observation clinique et applicable à l’étude des paralysies et des déformations. J.-B. Baillière et Fils Libraires de l’Académie Impériale de MédecineGoogle Scholar
  22. Fleming B, Beynnon B (2004) In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng 32: 318–328PubMedCrossRefGoogle Scholar
  23. Gabiccini M, Bicchi A, Prattichizzo D, Malvezzi M (2011) On the role of hand synergies in the optimal choice of grasping forces. Auton Robots [special issue on RSS2010] 31: 235–252CrossRefGoogle Scholar
  24. Gierlach D, Gustus A, van der Smagt P (2012) Generating marker stars for 6d optical tracking. In: The Fourth IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, Rome, ItalyGoogle Scholar
  25. Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, et al. (2011) The DLR hand arm system. In: 2011 IEEE international conference on robotics and automation, ShanghaiGoogle Scholar
  26. Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic hand-arm system. Adv Robot 22(1): 39–55CrossRefGoogle Scholar
  27. Hahn P, Krimmer H, Hradetzky A, Lanz U (1995) Quantitative analysis of the linkage between the interphalangeal joints of the index finger: An in vivo study. J Hand Surg 20(5): 696–699CrossRefGoogle Scholar
  28. Hillenbrand U (2008) Pose clustering from stereo data. In: Proceedings VISAPP international workshop on robotic perception, Funchal, pp 23–32Google Scholar
  29. Hirsch BE, Udupa JK, Samarasekera S (1996) New method of studying joint kinematics from three-dimensional reconstructions of MRI data. J Am Podiatr Med Assoc 86: 4–15PubMedCrossRefGoogle Scholar
  30. Hollister A, Buford WL, Myers LM, Giurintano DJ et al (1992) The axes of rotation of the thumb carpometacarpal joint. J Orthop Res 10: 454–460PubMedCrossRefGoogle Scholar
  31. Holzbaur K, Delp S, Murray W (2006) Moment-generating capacity of upper limb muscles. J Biomech 39(Supplement 1): S85CrossRefGoogle Scholar
  32. Holzbaur KR, Murray WM, Gold GE, Delp SL (2007) Upper limb muscle volumes in adult subjects. J Biomech 40(4): 742–749PubMedCrossRefGoogle Scholar
  33. Holzbaur KRS, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33: 829–840PubMedCrossRefGoogle Scholar
  34. Isa T, Ohki Y, Seki K, Alstermark B (2006) Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 95(6): 3674–3685PubMedCrossRefGoogle Scholar
  35. Jacobsen S, Iversen E, Knutti D, Johnson R, et al. (1986) Design of the Utah/M.I.T. dextrous hand. In: Proceedings of 1986 IEEE international conference on robotics and automation, vol 3, San Francisco, pp 1520–1532Google Scholar
  36. Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38(4): 335–378PubMedCrossRefGoogle Scholar
  37. Kozin SH, Porter S, Clark P, Thoder JJ (1999) The contribution of the intrinsic muscles to grip and pinch strength. J Hand Surg 24(1): 64–72CrossRefGoogle Scholar
  38. Kragten GA, Herder JL (2010) The ability of underactuated hands to grasp and hold objects. Mech Mach Theory 45: 408–425CrossRefGoogle Scholar
  39. Kragten GA, van der Helm FCT, Herder JL (2011) A planar geometric design approach for a large grasp range in underactuated hands. Mech Mach Theory 46: 1121–1136CrossRefGoogle Scholar
  40. Landsmeer JM (1961) Studies in the anatomy of articulation. I. the equilibrium of the “intercalated” bone. Acta Morphol Neerl Scand 3: 287–303PubMedGoogle Scholar
  41. Leardini A, O’Connor J, Catani F, Giannini S (1999) A geometric model of the human ankle joint. J Biomech 32(6): 585–591PubMedCrossRefGoogle Scholar
  42. Leijnse JNAL (1998) A method and device for measuring force transfers between the deep flexors in the musician’s hand. J Biomech 31(9): 773–779PubMedCrossRefGoogle Scholar
  43. Li ZM (2002) The influence of wrist position on individual finger forces during forceful grip. J Hand Surg Am 27: 886–96Google Scholar
  44. Long C, Conrad PW, Hall EA, Furler SL (1970) Intrinsic-extrinsic muscle control of the hand in power grip and precision handling. an electromyographic study. J Bone Joint Surg Am 52: 853–867PubMedGoogle Scholar
  45. Marguardt E (1965) The Heidelberg pneumatic arm prosthesis. J Bone Joint Surg 47: 425–434Google Scholar
  46. Metcalf C, Notley S, Chappell P, Burridge J et al (2008) Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Trans Biomed Eng 55(5): 1199–2010PubMedCrossRefGoogle Scholar
  47. Miyata N, Kouchi M, Kurihaya T, Mochimaru M (2004) Modeling of human hand link structure from optical motion capture data. In: Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and Systems, San JoseGoogle Scholar
  48. Miyata N, Kouchi M, Mochimaru M, Kurihaya T (2005) Finger joint kinematics from MR images. In: IEEE/RSJ international conference on intelligent robots and systems, EdmontonGoogle Scholar
  49. Napier J (1993) Hands (Princeton science libary). Princeton University Press, PrincetonGoogle Scholar
  50. Raphael G, Tsianos GA, Loeb GE (2010) Spinal-like regulator facilitates control of a two-degree-of-freedom wrist. J Neurosci 30(28): 9431–9444PubMedCrossRefGoogle Scholar
  51. Ryu JH, Miyata N, Kouchi M, Mochimaru M et al (2003) Analysis of skin movements with respect to bone motions using MR images. Int J CAD/CAM 3: 61–66Google Scholar
  52. Salisbury K (1988) Issues in human/computer control of dexterous remote hands. IEEE Trans Aerosp Electron Syst 24(5): 591–596CrossRefGoogle Scholar
  53. Salisbury K (1991) The Salisbury hand. Ind Robot 18(4): 25–26CrossRefGoogle Scholar
  54. Sancho-Bru J, Pérez-González A, Vergara-Monedero M, Giurintano D (2001) A 3-D dynamic model of human finger for studying free movements. Jo Biomech 34(11): 1491–1500CrossRefGoogle Scholar
  55. Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18(23): 10105–10115PubMedGoogle Scholar
  56. Schmitt S (2003) Modellierung und simulation biomechanischer Vorgänge am Beispiel Skisprung. Diplomarbeit, Universität StuttgartGoogle Scholar
  57. Seo N, Rymer W, Kamper D (2010) Altered digit force direction during pinch grip following stroke. Exp Brain Res 202: 891–901PubMedCrossRefGoogle Scholar
  58. Shinoda Y, Yamaguchi T, Futami T (1986) Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J Neurophysiol 55(3): 425–448PubMedGoogle Scholar
  59. Shinoda Y, Yokota JI, Futami T (1981) Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 23(1): 7–12PubMedCrossRefGoogle Scholar
  60. Smith-Bindman R, Lipson J, Marcus R, Kim KP et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 22: 2078–2086CrossRefGoogle Scholar
  61. Snijders CJ, Volkers AC, Mechelse K, Vleeming A (1987) Provocation of epicondylalgia lateralis (tennis elbow) by power grip or pinching. Med Sci Sports Exerc 19: 518–523PubMedCrossRefGoogle Scholar
  62. Stillfried G, Hillenbrand U, Settles M, van der Smagt P (2012) The human hand—a source of inspiration for robotic hands, Springer Tracts on Advanced Robotics, chap. MRI-based skeletal hand movement model (in press)Google Scholar
  63. Stillfried G, van der Smagt P (2010) Movement model of a human hand based on magnetic resonance imaging (MRI). In: 1st international conference on applied bionics and biomechanics, VeniceGoogle Scholar
  64. Takei T, Seki K (2010) Spinal interneurons facilitate coactivation of hand muscles during a precision grip task in monkeys. J Neurosci 30(50): 17041–17050PubMedCrossRefGoogle Scholar
  65. Valero-Cuevas FJ, Laboratory NB (2000) Applying principles of robotics to understand the biomechanics, neuromuscular control and clinical rehabilitation of human digits. In: Proceedings of IEEE international conference on robotics and automation, San Francisco, pp 270–275Google Scholar
  66. Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31: 693–703PubMedCrossRefGoogle Scholar
  67. van der Helm F (1994) A finite element musculoskeletal model of the shoulder mechanism. J Biomech 27(5): 551–569PubMedCrossRefGoogle Scholar
  68. van der Smagt P, Stillfried G (2008) Using MRI data to compute a hand kinematic model. In: 9th conference on motion and vibration control (MOVIC), München, GermanyGoogle Scholar
  69. van Nierop OA, van der Helm A, Overbeeke KJ, Djajadiningrat TJ (2008) A natural human hand model. Visual Comput 24: 31–44CrossRefGoogle Scholar
  70. Waldron K, Schmiedeler J (2008) Kinematics. In: Siciliano K (ed) Handbook of robotics. Springer, Berlin, pp 9–34Google Scholar
  71. Wilkinson DD, Vandeweghe JM, Matsuoka Y (2003) An extensor mechanism for an anatomical robotic hand. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA ’03), Washington , vol 1, pp 238–243Google Scholar
  72. Wilms E, Nader L (1951) Die Technik der Vaduzer Hand. Orthopädie Technik 2(7): 7Google Scholar
  73. Woltring H, Lange Ad, Kauer J, Huiskes H (1987) Instantaneous helical axis estimation via natural, cross-validated splines. In: Biomechanics: basic and applied research. Springer, BerlinGoogle Scholar
  74. Wu G, van der Helm CT, Veeger HEJ et al (2005) ISB recommendation of joint coordinate systems of various joints for the reporting of human joint motion - part ii: shoulder, elbow, wrist and hand. J Biomech 38: 981–992PubMedCrossRefGoogle Scholar
  75. Wu JZ, An KN, Cutlip RG, Andrew ME et al (2009) Modeling of the muscle/tendon excursions and moment arms in the thumb using the commercial software anybody. J Biomech 42: 383–388PubMedCrossRefGoogle Scholar
  76. Wu JZ, An KN, Cutlip RG, Dong RG (2010) A practical biomechanical model of the index finger simulating the kinematics of the muscle/tendon excursions. Bio-Med Mater Eng 20: 89–97Google Scholar
  77. Youm Y, Gillespie T, Flatt A, Sprague B (1978) Kinematic investigation of normal mcp joint. J Biomech 11(3): 109–118PubMedCrossRefGoogle Scholar
  78. Zancolli (1979) Structural and dynamic bases of hand surgery. Lippincot, PhiladelphiaGoogle Scholar
  79. Zhang X, Sang-Wook L, Braido P (2003) Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement. J Biomech 36: 1097–1102PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Agneta Gustus
    • 1
    Email author
  • Georg Stillfried
    • 2
  • Judith Visser
    • 3
  • Henrik Jörntell
    • 4
  • Patrick van der Smagt
    • 2
    • 5
  1. 1.Faculty of Electronics and Information TechnologyTechnische Universität MünchenMunichGermany
  2. 2.Bionics Lab, Institute of Robotics and MechatronicsDLR (German Aerospace Center), OberpfaffenhofenWesslingGermany
  3. 3.Department BioMechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Neural basis of sensorimotor control, Department of Experimental Medical ScienceLund UniversityLundSweden
  5. 5.Faculty of InformaticsTechnische Universität MünchenMunichGermany

Personalised recommendations