Biological Cybernetics

, Volume 107, Issue 5, pp 497–512 | Cite as

A computational model of visually guided locomotion in lamprey

  • Iman Kamali Sarvestani
  • Alexander Kozlov
  • Nalin Harischandra
  • Sten Grillner
  • Örjan Ekeberg


This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body. The undulations of the body are generated by contraction of simulated muscles attached to realistic body components. Muscles are driven by simulated motoneurons within networks of central pattern generators. Reticulospinal neurons, which drive the spinal pattern generators, are in turn driven directly and indirectly by visuomotor centers in the brainstem. The neural networks representing visuomotor centers receive sensory input from a simplified retina. The model also includes major components of the basal ganglia, as these are hypothesized to be key components in behavior selection. We have hypothesized that sensorimotor transformation in tectum and pretectum transforms the place-coded retinal information into rate-coded turning commands in the reticulospinal neurons via a recruitment network mimicking the layered structure of tectal areas. Via engagement of the basal ganglia, the system proves to be capable of selecting among several possible responses, even if exposed to conflicting stimuli. The anatomically based structure of the control system makes it possible to disconnect different neural components, yielding concrete predictions of how animals with corresponding lesions would behave. The model confirms that the neural networks identified in the lamprey are capable of responding appropriately to simple, multiple, and conflicting stimuli.


Tectum Pretectum Basal ganglia Mesencephalic locomotor region Reticulospinal Central pattern generator Lamprey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2012_524_MOESM1_ESM.mpg (876 kb)
ESM 1 (MPG 876 kb)
422_2012_524_MOESM2_ESM.mpg (568 kb)
ESM 2 (MPG 568 kb)
422_2012_524_MOESM3_ESM.mpg (1.4 mb)
ESM 3 (MPG 1392 kb)
422_2012_524_MOESM4_ESM.mpg (1.1 mb)
ESM 4 (MPG 1082 kb)


  1. Braitenberg V (1984) Vehicles: experiments in synthetic psychology. MIT Press, CambridgeGoogle Scholar
  2. Brocard F, Ryczko D, Fénelon K, Hatem R, Gonzales D, Auclair F, Dubuc R (2010) The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J Neurosci 13(30(2): 523–533CrossRefGoogle Scholar
  3. Cabelguen JM, Ijspeert A, Lamarque S, Ryczko D (2010) Axial dynamics during locomotion in vertebrates lesson from the salamander. Prog Brain Res 187: 149–162PubMedCrossRefGoogle Scholar
  4. Cornide-Petronio ME, Barreiro-Iglesias A, Anadón R, Rodicio MC (2011) Retinotopy of visual projections to the optic tectum and pretectum in larval sea lamprey. Exp Eye Res 92(4): 274–281PubMedCrossRefGoogle Scholar
  5. Chiel HJ, Ting LH, Hartmann MJ, Hartmann MJ (2009) The brain in its body: motor control and sensing in a biomechanical context. J Neurosci 29(41): 12807–12814PubMedCrossRefGoogle Scholar
  6. De Miguel E, Rodicio MC, Anadon R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302: 529–542PubMedCrossRefGoogle Scholar
  7. Dubuc R, Brocard F, Antri M, Fénelon K, Gariépy JF, Smetana R, Ménard A, Le Ray D, VianaDi Prisco G, Pearlstein E, Sirota MG, Derjean D, St-Pierre M, Zielinski B, Auclair F, Veilleux D (2008) Initiation of locomotion in lampreys. Brain Res Rev 57(1): 172–182PubMedCrossRefGoogle Scholar
  8. Eaton RC, Lee RKK, Foreman MB (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63(4): 467–485PubMedCrossRefGoogle Scholar
  9. MB (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69: 363–374Google Scholar
  10. Grillner S, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Philos Trans R Soc Lond B Biol Sci 354: 895–902PubMedCrossRefGoogle Scholar
  11. Finkenstädt T, Ewert JP (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153(1): 99–110CrossRefGoogle Scholar
  12. Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25(40): 9294–9303PubMedCrossRefGoogle Scholar
  13. Gewaltig MO, Diesmann M (2007) NEST (Neural Simulation Tool). Scholarpedia 2(4): 1430CrossRefGoogle Scholar
  14. Grillner S, Georgopoulos AP, Jordan LM (1997) Selection and initiation of motor behavior. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 3–19Google Scholar
  15. Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren Kotaleski J (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165: 221–234PubMedCrossRefGoogle Scholar
  16. Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Res Rev 57(1): 2–12PubMedCrossRefGoogle Scholar
  17. Groh JM (2001) Converting neural signals from place codes to rate codes. Biol Cybern. 85(3): 159–165PubMedCrossRefGoogle Scholar
  18. Harischandra N, Cabelguen J-M, Ekeberg Ö (2010) A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion. Front Neurorobot 4: 112PubMedCrossRefGoogle Scholar
  19. Harischandra N, Knuesel J, Kozlov A, Bicanski A, Cabelguen JM, Ijspeert A, Ekeberg Ö (2011) Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study. Front NeurorobotGoogle Scholar
  20. Heier P (1948) Fundamental principles in the structure of the brain. A Study of the brain of Petromyzon fluvilatis. Acta Anat [Suppl] VI:213Google Scholar
  21. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4): 642–653PubMedCrossRefGoogle Scholar
  22. Ijspeert AJ, Arbib M (2000) Visual tracking in simulated salamander locomotion, from animals to animats. In: Meyer JA, Berthoz A, Floreano D, Roitblat H, Wilson SW (eds) Proceedings of the 6th international conference on the simulation of adaptive behavior (SAB2000). MIT Press, Cambridge, pp 88–97Google Scholar
  23. Kamali Sarvestani I, Lindahl M, Hellgren-Kotaleski J, Ekeberg Ö (2011) The arbitration-extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia. Front Syst Neurosci 5: 13PubMedGoogle Scholar
  24. Johnson NS, Yun SS, Thompson HT, Brant CO, Li W (2009) A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proc Natl Acad Sci USA 106: 1021–1026PubMedCrossRefGoogle Scholar
  25. Jones MR, Grillner S, Robertson B (2009) Selective projection patterns from subtypes of retinal ganglion cells to tectum and pretectum: distribution and relation to behavior. J Comp Neurol 517(3): 257–275PubMedCrossRefGoogle Scholar
  26. Jordan LM (1998) Initiation of locomotion in mammals. Ann NY Acad Sci 860: 83–93PubMedCrossRefGoogle Scholar
  27. Kennedy MC, Rubinson K (1977) Retinal projections in larval, transforming and adult sea lamprey Petromyzon marinus. J Comp Neurol 171: 465–480PubMedCrossRefGoogle Scholar
  28. Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making. Neuron 47(1): 13–28PubMedCrossRefGoogle Scholar
  29. Kosareva AA (1980) Retinal projections in lamprey (Lampetra fluviatilis). J Hirnforsch 21(3): 243–256PubMedGoogle Scholar
  30. Kozlov et al. (2009) Simple cellular and network control principles govern complex patterns of behavior. PNASGoogle Scholar
  31. Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9: 620–635Google Scholar
  32. Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332(6162): 357–360PubMedCrossRefGoogle Scholar
  33. Le Ray D, Juvin L, Ryczko D, Dubuc R (2011) Supraspinal control of locomotion: the mesencephalic locomotor region. In: Gossard JP, Dubuc R, Kotla A (eds) Breath, walk and chew, the neural challenge: II. Prog Brain ResGoogle Scholar
  34. Maier S, Walkowiak W, Luksch H, Endepols H (2010) An indirect basal ganglia pathway in anuran amphibians?. J Chem Neuroanat 40(1): 21–35PubMedCrossRefGoogle Scholar
  35. McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P (2005) Subcortical loops through the basal ganglia. Trends Neurosci 28: 401–407PubMedCrossRefGoogle Scholar
  36. Ménard A, Auclair F, Bourcier-Lucas C, Grillner S, Dubuc R (2007) Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 501(2): 260–273PubMedCrossRefGoogle Scholar
  37. Meredith MA, Ramoa AS (1998) Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons. J Neurophysiol 79(3): 1597–1602PubMedGoogle Scholar
  38. Nieuwenhuys R, Nicholson C (1998) Lampreys, Petromyzontoidea. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Heidelberg, pp 397–495Google Scholar
  39. Petreska B (2004) A neural visuomotor controller for asimulated Salamander Robot. Dissertation. École Polytechnique Fédérale de LausanneGoogle Scholar
  40. Redgrave P, Prescott TJ, Gurney K (1990) The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 89(4): 1009–1023CrossRefGoogle Scholar
  41. Robertson B, Saitoh K, Ménard A, Grillner S (2006) Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study. J Comp Neurol 499(1): 106–119PubMedCrossRefGoogle Scholar
  42. Roth G, Grunwald W (2000) Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the salamander Plethodon jordani. J Comp Neurol 428(3): 543–557PubMedCrossRefGoogle Scholar
  43. Saitoh K, Ménard A, Grillner S (2007) Tectal control of locomotion, steering, and eye movements in lamprey. J Neurophysiol 97(4): 3093–3108PubMedCrossRefGoogle Scholar
  44. Sánchez-Camacho C, Marín O, Ten Donkelaar HJ, González A. (2001a) Descending supraspinal pathways in amphibians: I. A dextran amine tracing study of their cells of origin. J Comp Neurol 434(2): 186–208PubMedCrossRefGoogle Scholar
  45. Sánchez-Camacho C, Marín O, Smeets WJ, Ten Donkelaar HJ, González A. (2001b) Descending supraspinal pathways in amphibians: II. Distribution and origin of the catecholaminergic innervation of the spinal cord. J Comp Neurol 434(2): 209–232PubMedCrossRefGoogle Scholar
  46. Sánchez-Camacho C, Martín O, Ten Donkelaar HJ, González A. (2002) Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. J Comp Neurol 446(1): 11–24PubMedCrossRefGoogle Scholar
  47. Selset R, Doving KB (1980) Behaviour of mature anadromous char (Salmoalpinus L.) towards odorants produced by smolts of their own population. ActaPhysiol Scand 108: 113–122CrossRefGoogle Scholar
  48. Smetana R, Juvin L, Dubuc R, Alford S (2010) A parallel cholinergic brainstem pathway for enhancing locomotor drive. Nat Neurosci 13(6): 731–738PubMedCrossRefGoogle Scholar
  49. Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21(13): 1081–1091PubMedCrossRefGoogle Scholar
  50. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50(2): 137–151PubMedCrossRefGoogle Scholar
  51. Takakusaki K (2008) Forebrain control of locomotor behaviors. Brain Res Rev 57(1): 192–198PubMedCrossRefGoogle Scholar
  52. Ullén F, Deliagina T, Orlovsky G, Grillner S (1995) Spatial orientation in the lamprey. II. Visual influence on orientation during locomotion and in the attached state. J Exp Biol 198(Pt 3): 675–681Google Scholar
  53. Ullén F, Deliagina TG, Orlovsky GN, Grillner S (1997) Visual pathways for postural control and negative phototaxis in lamprey. J Neurophysiol 78(2): 960–976PubMedGoogle Scholar
  54. van der Want JJ, Nunes Cardozo JJ, van der Togt C (1992) GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. Prog Brain Res 90: 283–305PubMedCrossRefGoogle Scholar
  55. Vesselkin NP, Ermakova TV, Repérant J, Kosareva AA, Kenigfest NB (1980) The retinofugal and retinopetal systems in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Res 195(2): 453–460PubMedCrossRefGoogle Scholar
  56. VianaDi Prisco G, Pearlstein E, Robitaille R, Dubuc R (1997) Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science 278: 1122–1125CrossRefGoogle Scholar
  57. VianaDi Prisco G, Pearlstein E, Le Ray D, Robitaille R, Dubuc R (2000) A cellular mechanism for the transformation of a sensory input into a motor command. J Neurosci 20: 8169–8176Google Scholar
  58. Zelenin PV, Grillner S, Orlovsky GN, Deliagina TG. (2001) Heterogeneity of the population of command neurons in the lamprey. J Neurosci 21(19): 7793–7803PubMedGoogle Scholar
  59. Zompa IC, Dubuc R (1998a) a) Diencephalic and mesencephalic projections to rhombencephalic reticular nuclei in lampreys. Brain Res 802(1-2): 27–54PubMedCrossRefGoogle Scholar
  60. Zompa IC, Dubuc R (1998) Electrophysiological and neuropharmacological study of tectoreticular pathways in lampreys. Brain Res 804(2): 238–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Iman Kamali Sarvestani
    • 1
    • 4
  • Alexander Kozlov
    • 1
    • 2
    • 4
  • Nalin Harischandra
    • 1
    • 4
  • Sten Grillner
    • 2
    • 3
    • 4
  • Örjan Ekeberg
    • 1
  1. 1.Department of Computational BiologySchool of Computer Science and Communication, KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Department of NeuroscienceKarolinska InstituteStockholmSweden
  3. 3.Nobel Institute for NeurophysiologyStockholmSweden
  4. 4.Stockholm Brain InstituteStockholmSweden

Personalised recommendations