Biological Cybernetics

, Volume 106, Issue 10, pp 595–613

The role of feedback in morphological computation with compliant bodies

  • Helmut Hauser
  • Auke J. Ijspeert
  • Rudolf M. Füchslin
  • Rolf Pfeifer
  • Wolfgang Maass
Open Access
Original Paper

Abstract

The generation of robust periodic movements of complex nonlinear robotic systems is inherently difficult, especially, if parts of the robots are compliant. It has previously been proposed that complex nonlinear features of a robot, similarly as in biological organisms, might possibly facilitate its control. This bold hypothesis, commonly referred to as morphological computation, has recently received some theoretical support by Hauser et al. (Biol Cybern 105:355–370, doi:10.1007/s00422-012-0471-0, 2012). We show in this article that this theoretical support can be extended to cover not only the case of fading memory responses to external signals, but also the essential case of autonomous generation of adaptive periodic patterns, as, e.g., needed for locomotion. The theory predicts that feedback into the morphological computing system is necessary and sufficient for such tasks, for which a fading memory is insufficient. We demonstrate the viability of this theoretical analysis through computer simulations of complex nonlinear mass–spring systems that are trained to generate a large diversity of periodic movements by adapting the weights of a simple linear feedback device. Hence, the results of this article substantially enlarge the theoretically tractable application domain of morphological computation in robotics, and also provide new paradigms for understanding control principles of biological organisms.

Keywords

Morphological computation Nonlinear system Limit cycles compliant robots 

Supplementary material

422_2012_516_MOESM1_ESM.pdf (228 kb)
ESM 1 (PDF 228 kb)

References

  1. Bartlett PL, Maass W (2003) Vapnik–Chervonenkis dimension of neural nets. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, pp 1188–1192Google Scholar
  2. Bishop CM (1994) Training with noise is equivalent to tikhonov regularization. Neural Comput 7: 108–116CrossRefGoogle Scholar
  3. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307: 1082–1085PubMedCrossRefGoogle Scholar
  4. Franceschini N, Pichon JM, Blanes C, Brady JM (1992) From insect vision to robot vision. Phil Trans R Soc Lond B 337(1281): 283–294CrossRefGoogle Scholar
  5. Hauser H, Ijspeert A, Füchslin RM, Pfeifer R, Maass W (2012) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5): 355–370 ISSN 0340-1200CrossRefGoogle Scholar
  6. Hoerzer G, Legenstein R, Maass W (2011) Eliminating the teacher in reservoir computing. In: Pfeifer R, Sumioka H, Füchslin RM, Hauser H, Nakajima K, Miyashita S (eds) Proceedings of the 2nd international conference on morphological computation, VeniceGoogle Scholar
  7. Hoerzer GM, Legenstein R, Maass W (2012) Emergence of complex computational structures from chaotic neural networks through reward-modulated hebbian learning (in preparation)Google Scholar
  8. Hoffmann M, Marques H, Hernandez Arieta A, Sumioka H, Lungarella M, Pfeifer R (2010) Body schema in robotics: a review. IEEE Trans Auton Mental Develop 2(4): 304–324CrossRefGoogle Scholar
  9. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2: 359–366CrossRefGoogle Scholar
  10. Iida F, Pfeifer R (2006) Sensing through body dynamics. Robot Auton Syst 54(8): 631–640CrossRefGoogle Scholar
  11. Ijspeert A, Crespi A, Ryczko D, Cabelguen J-M (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817): 1416–1420PubMedCrossRefGoogle Scholar
  12. Isidori A (2001) Nonlinear control systems, 3rd edn. Springer, LondonGoogle Scholar
  13. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  14. Legenstein R, Chase SM, Schwartz AB, Maass W (2010) A reward-modulated Hebbian learning rule can explain experimentally observed network reorganization in a brain control task. J Neurosci 30(25): 8400–8410PubMedCrossRefGoogle Scholar
  15. Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3): 127–149CrossRefGoogle Scholar
  16. Maass W, Natschlaeger T, Markram H (2002) Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput 14(11): 2531–2560PubMedCrossRefGoogle Scholar
  17. Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3(1): e165PubMedCrossRefGoogle Scholar
  18. Martini HF, Nath JL, Bartholomew EF (2011) Fundamentals of anatomy & physiology, 9th edn. Benjamin-Cummings Publishing Company, Menlo ParkGoogle Scholar
  19. McGeer T (1990) Passive dynamic walking. Int J Rob Res 9(2): 62–82CrossRefGoogle Scholar
  20. Miyashita S, Göldi M, Pfeifer R (2011) How reverse reactions influence the yield rate of stochastic self-assembly. Int J Robot Res 30: 627–641CrossRefGoogle Scholar
  21. Palm WJ III (1999) Modeling, analysis, and control of dynamic systems, 2nd edn. Wiley, New YorkGoogle Scholar
  22. Paul C (2006) Morphological computation: A basis for the analysis of morphology and control requirements. Robot Auton Syst 54(8): 619–630CrossRefGoogle Scholar
  23. Paul C, Valero-Cuevas FJ, Lipson H (2006) Design and control of tensegrity robots for locomotion. IEEE Trans Robot 22(5): 944–957CrossRefGoogle Scholar
  24. Pfeifer R, Bongard JC (2007) How the body shapes the way we think. The MIT Press, CambridgeGoogle Scholar
  25. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318: 1088–1093PubMedCrossRefGoogle Scholar
  26. Rieffel J, Trimmer B,Lipson H (2008) Mechanism as mind: what tensegrities and caterpillars can teach us about soft robotics. In: Bullock S, Noble J, Watson R, Bedau MA (eds) Artificial life XI: proceedings of the eleventh international conference on the simulation and synthesis of living systems, pp 506–512. MIT Press, CambridgeGoogle Scholar
  27. Righetti L, Ijspeert AJ (2008) Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE international conference on robotics and automation, pp 819–824. ICRA 2008, Pasadena, 19–23 May 2008Google Scholar
  28. Schrauwen B, Verstraeten D, Van Campenhout J (2007) An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European symposium on artificial neural networks pp 471–482. ESANN , BrugesGoogle Scholar
  29. Shaw RS, Packard N, Schröter M, Swinney HL (2007) Geometry-induced asymmetric diffusion. PNAS 104(23): 9580–9584PubMedCrossRefGoogle Scholar
  30. Shim Y, Husbands P (2007) Feathered flyer: integrating morphological computation and sensory reflexes into a physically simulated flapping-wing robot for robust flight manoeuvre. In: Almeida e Costa F et al. (eds) ECAL, pp 756–765. Springer, BerlinGoogle Scholar
  31. Slotine J-JE, Li W (1991) Applied nonlinear control, 1st edn. Prentice Hall, New YorkGoogle Scholar
  32. Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems, 2nd edn. Springer, New YorkGoogle Scholar
  33. Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78(1): 9–17PubMedCrossRefGoogle Scholar
  34. Tedrake R, Zhang TW, Seung HS (2005) Learning to walk in 20 minutes. In: Proceedings of the fourteenth yale workshop on adaptive and learning systems, Yale University, New HavenGoogle Scholar
  35. Vapnik VN (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  36. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564): 2418–2441PubMedCrossRefGoogle Scholar
  37. Wisse M, van der Linde RQ (2007) Delft pneumatic bipeds, vol 34. Springer Tracts in Advanced Robotics. Springer, BerlinGoogle Scholar
  38. Wisse M, Van Frankenhuyzen J (2003) Design and construction of MIKE: a 2D autonomous biped based on passive dynamic walking. In: Proceedings of international symposium of adaptive motion and animals and machines (AMAM03), KyotoGoogle Scholar
  39. Wood RJ (2007) Design, fabrication, and analysis of a 3DOF, 3 cm flapping-wing MAV, pp 1576–1581. IROS, San DiegoGoogle Scholar
  40. Wyffels F, Schrauwen B (2009) Design of a central pattern generator using reservoir computing for learning human motion. In: ATEQUAL 2009: 2009 ECSIS symposium on advanced technologies for enhanced quality of life (LABRS and ARTIPED 2009): proceedings, pp 118–122. IEEE Computer Society, Los AlamitosGoogle Scholar
  41. Ziegler M, Iida F, Pfeifer R (2006) “Cheap” underwater locomotion: roles of morphological properties and behavioural diversity. In: International Conference on Climbing and Walking Robots, CLAWAR, KarlsruheGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Helmut Hauser
    • 1
  • Auke J. Ijspeert
    • 3
  • Rudolf M. Füchslin
    • 1
    • 2
  • Rolf Pfeifer
    • 1
  • Wolfgang Maass
    • 4
  1. 1.Artificial Intelligence Laboratory, Department of InformaticsUniversity of ZurichZurichSwitzerland
  2. 2.ZHAW Zurich University of Applied Sciences, Center for Applied Mathematics and Physics ZAMPWinterthurSwitzerland
  3. 3.École Polytechnique Fédérale de Lausanne, Biorobotics Laboratory BIOROBLausanneSwitzerland
  4. 4.Graz University of Technology, Institute for Theoretical Computer ScienceGrazAustria

Personalised recommendations