Advertisement

Biological Cybernetics

, Volume 106, Issue 6–7, pp 407–427 | Cite as

Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent

  • Renan C. MoioliEmail author
  • Patricia A. Vargas
  • Phil Husbands
Original Paper

Abstract

Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain–body– environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.

Keywords

Synchronisation Evolutionary robotics Oscillatory networks Transfer entropy Kuramoto model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Modern Phys 77(1): 137–185CrossRefGoogle Scholar
  2. Arthuis M, Valton L, Régis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132: 2091–2101PubMedCrossRefGoogle Scholar
  3. Beer R (2003) The dynamics of active categorical perception in an evolved model agent. Adapt Behav 11(4): 209–243CrossRefGoogle Scholar
  4. Beggs J (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Phil Trans R Soc, Ser A 366(1864): 329–343CrossRefGoogle Scholar
  5. Boden MA (2006) Mind as machine: a history of cognitive science vols. I and II. Oxford University Press, OxfordGoogle Scholar
  6. Bongard JC (2011) Innocent until proven guilty: reducing robot shaping from polynomial to linear time. IEEE Trans Evol Comput 15(4): 571–585CrossRefGoogle Scholar
  7. Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2(11): 947–957PubMedCrossRefGoogle Scholar
  8. Breakspear M, Heitmann S, Daffertshofer A (2010) Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front Hum Neurosci 4:190Google Scholar
  9. Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18: 357–363PubMedCrossRefGoogle Scholar
  10. Buehlmann A, Deco G (2010) Optimal information transfer in the cortex through synchronization. PLoS Comput Biol 6(9)Google Scholar
  11. Buzsáki G (2006) Rhythms of the Brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  12. Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6(10): 744–750CrossRefGoogle Scholar
  13. Cumin D, Unsworth C (2007) Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226(2): 181–196CrossRefGoogle Scholar
  14. Dale K, Husbands P (2010) The evolution of reaction-diffusion controllers for minimally cognitive agents. Artif Life 16(1): 1–19PubMedCrossRefGoogle Scholar
  15. Deco G, Buehlmann A, Masquelier T, Hugues E (2011) The role of rhythmic neural synchronization in rest and task conditions. Front Hum Neurosci 5:4Google Scholar
  16. Di Paolo EA (2000) Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In: Meyer J-A, Berthoz B, Floreano D, Roitblat H, Wilson SW (eds) Proc Sixth Int Conf Sim of Adaptive Behavior, Paris, pp 440–449Google Scholar
  17. Engel A (2010) Directive minds: how dynamics shapes cognition. In: Stewart J, Gapenne O, Di Paolo EA (eds) Enaction: toward a new paradigm for cognitive science. MIT Press, CambridgeGoogle Scholar
  18. Engel A, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10): 704–716PubMedCrossRefGoogle Scholar
  19. Ermentrout G, Kleinfeld D (2001) Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron 29: 33–44PubMedCrossRefGoogle Scholar
  20. Flanders M (2011) What is the biological basis of sensorimotor integration. Biol Cybern 104: 1–8PubMedCrossRefGoogle Scholar
  21. Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In Siciliano B, Khatib O (eds) Springer Handbook of Robotics, pp. 1423–1451Google Scholar
  22. Floreano D, Keller L (2010) Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol 8(1):e1000292Google Scholar
  23. Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence. MIT Press, CambridgeGoogle Scholar
  24. Glass L (2001) Rhythmic processes in physiology. Nature 410: 277–284PubMedCrossRefGoogle Scholar
  25. Gourévitch B, Eggermont J (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97: 2533–2543PubMedCrossRefGoogle Scholar
  26. Harnad SE (1987) Categorical perception: the groundwork of cognition. Cambridge University Press, CambridgeGoogle Scholar
  27. Harvey I, Di Paolo E, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: a new scientific tool for studying cognition. Artif Life 11(1-2): 79–98PubMedCrossRefGoogle Scholar
  28. Hatsopoulos N, Ojakangas C, Paninski L, Donoghue J (1998) Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci USA, Neurobiol 95: 15706–15711CrossRefGoogle Scholar
  29. Husbands P (2009) Never mind the iguana, what about the tortoise? Models in adaptive behaviour. Adapt Behav 17(4): 320–324CrossRefGoogle Scholar
  30. Husbands P, Smith T, Jakobi N, O Shea M (1998) Better living through chemistry: evolving GasNets for robot control. Connect Sci 10: 185–210CrossRefGoogle Scholar
  31. Ijspeert A, Crespi A, Ryczko D, Cabelguen J (2005) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817): 1416–1420CrossRefGoogle Scholar
  32. Izhikevich E (1999) Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Trans Neural Networks 10(3): 508–526CrossRefGoogle Scholar
  33. Izquierdo E (2008) The dynamics of learning behaviour: a situated, embodied, and dynamical systems approach. PhD thesis, CCNR, University of Sussex, BrightonGoogle Scholar
  34. Jackson A, Gee V, Baker S, Lemon R (2003) Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron 38: 115–125PubMedCrossRefGoogle Scholar
  35. Jakobi N, Husbands P, Harvey I (1995) Noise and the reality gap: the use of simulations in evolutionary robotics. In: Moran F et al. (eds) Proc 3rd Eur Conf, Artif Life. Springer, Berlin, pp 704–720Google Scholar
  36. Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  37. Katz PE (1999) Beyond neurotransmission: neuromodulation and its importance for information processing. Oxford University Press, OxfordCrossRefGoogle Scholar
  38. Kitzbichler M, Smith M, Christensen S, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5(3): e1000314PubMedCrossRefGoogle Scholar
  39. Kullback S (1959) Information theory and statistics. Wiley, New YorkGoogle Scholar
  40. Kunyosi M, Monteiro L (2009) Recognition of noisy images by PLL networks. Signal Process 89(7): 1311–1319CrossRefGoogle Scholar
  41. Kuramoto Y (1984) Chemical oscillation, waves, and turbulence. Springer, New YorkCrossRefGoogle Scholar
  42. Li Z, Hopfield J (1989) Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61(5): 379–392PubMedCrossRefGoogle Scholar
  43. Lungarella M, Ishiguro K, Kuniyoshi Y, Otsu N (2007) Methods for quantifying the causal structure of bivariate time series. Int J Bifurcation Chaos 17(3): 903–921CrossRefGoogle Scholar
  44. Lungarella M, Pegors T, Bulwinkle D, Sporns O (2005) Methods for quantifying the informational structure of sensory and motor data. Neuroinformatics 3(3): 243–262PubMedCrossRefGoogle Scholar
  45. Lungarella M, Pitti A, Kuniyoshi Y (2007) Information transfer at multiple scales. Phys Rev E 76: 056117CrossRefGoogle Scholar
  46. Lungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comput Biol 2(10): e144PubMedCrossRefGoogle Scholar
  47. Maistrenko YL, Popovych OV, Tass PA (2005) Chaotic attractor in the Kuramoto Model. Int J Bifurcation Chaos 15(11): 3457–3466CrossRefGoogle Scholar
  48. Marschinski R, Kantz H (2002) Analysing the information flow between financial time series: An improved estimator for transfer entropy. Eur Phys J B 30(2): 275–281CrossRefGoogle Scholar
  49. Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12): e1000239PubMedCrossRefGoogle Scholar
  50. McDonnell M, Ikeda S, Manton J (2011) An introductory review of information theory in the context of computational neuroscience. Biol Cybern 105: 55–70PubMedCrossRefGoogle Scholar
  51. Murray JD (1989) Mathematical biology: an introduction. Springer, BerlinGoogle Scholar
  52. Noe A. (2004) Action in perception. MIT Press, CambridgeGoogle Scholar
  53. Omelchenko O, Maistrenko Y, Tass P (2008) Chimera states: the natural link between coherence and incoherence. Phys Rev Lett 100: 044105CrossRefGoogle Scholar
  54. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318: 1088PubMedCrossRefGoogle Scholar
  55. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Pitti A, Lungarella M, Kuniyoshi Y (2009) Generating spatiotemporal joint torque patterns from dynamical synchronization of distributed pattern generators. Front NeuroRobotics 3(2): 1–14Google Scholar
  57. Pitti A, Niiyama R, Kuniyoshi Y (2010) Creating and modulating rhythms by controlling the physics of the body. Autonomous Robots 28(3): 317–329CrossRefGoogle Scholar
  58. Rieke F, Warland D, Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. Bradford Book, MIT Press, CambridgeGoogle Scholar
  59. Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, OxfordGoogle Scholar
  60. Rosenstein M, Collins J, Deluca C (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65(1–2): 117–134CrossRefGoogle Scholar
  61. Santos B, Barandiaran X, Husbands P (2011) Metastable dynamical regimes in an oscillatory network modulated by an agent’s sensorimotor loop. Proc. IEEE Symp Artif Life (SSCI)Google Scholar
  62. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85: 461–464PubMedCrossRefGoogle Scholar
  63. Shanahan MP (2010) Metastable chimera states in community-structured oscillator networks. Chaos 20: 013108PubMedCrossRefGoogle Scholar
  64. Silverman B (1998) Density estimation for statistics and data analysis. Chapman and Hall, LondonGoogle Scholar
  65. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55: 349–374PubMedCrossRefGoogle Scholar
  66. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations?. Neuron 24(1): 49–65PubMedCrossRefGoogle Scholar
  67. Staniek M, Lehnertz K (2008) Symbolic transfer entropy. Phys Rev Lett 100(15): 158101PubMedCrossRefGoogle Scholar
  68. Stewart J, Gapenne O, Di Paolo EA (2010) Enaction: toward a new paradigm for cognitive science. MIT Press, CambridgeGoogle Scholar
  69. Strogatz S (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143:1–20Google Scholar
  70. Szczepanski J, Arnold M, Wajnryb E, Amigo JM, Sanchez-Vives MV (2011) Mutual information and redundancy in spontaneous communication between cortical neurons. Biol Cybern 104: 161–174PubMedCrossRefGoogle Scholar
  71. Taga G (1994) Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D 75(1-3): 190–208CrossRefGoogle Scholar
  72. Tass P (2006) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, BerlinGoogle Scholar
  73. Tognoli E, Kelso JAS (2009) Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog Neurobiol 87(1): 31–40PubMedCrossRefGoogle Scholar
  74. Urzelai J, Floreano D (2001) Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Evol Comput 9(4): 495–524PubMedCrossRefGoogle Scholar
  75. Varela F, Lachaux J, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4): 229–239PubMedCrossRefGoogle Scholar
  76. Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy: a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30: 45–67PubMedCrossRefGoogle Scholar
  77. Malsburg C (1981) The correlation theory of the brain. Internal report. Max-Planck-Institute for Biophysical Chemistry, GottingenGoogle Scholar
  78. Williams P, Beer R (2010) Information dynamics of evolved agents. In: Doncieux S, Girard B, Guillot A, Hallam J, Meyer J-A, Mouret J-B (eds) Proc 11th Int Conf Sim Adapt Behav, pp 38–49)Google Scholar
  79. Winfree A (1980) The geometry of biological time. Springer, BerlinGoogle Scholar
  80. Womelsdorf T, Schoffelen J, Oostenveld R, Singer W, Desimone R, Engel A, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831): 1609–1612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Renan C. Moioli
    • 1
    Email author
  • Patricia A. Vargas
    • 2
  • Phil Husbands
    • 1
  1. 1.Department of Informatics, Centre for Computational Neuroscience and Robotics (CCNR)University of SussexFalmer, BrightonUK
  2. 2.School of Mathematical and Computer ScienceHeriot-Watt UniversityEdinburghScotland, UK

Personalised recommendations