Advertisement

Biological Cybernetics

, Volume 106, Issue 3, pp 155–167 | Cite as

Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods

  • Mark Kostuk
  • Bryan A. Toth
  • C. Daniel Meliza
  • Daniel Margoliash
  • Henry D. I. Abarbanel
Original Paper

Abstract

Hodgkin–Huxley (HH) models of neuronal membrane dynamics consist of a set of nonlinear differential equations that describe the time-varying conductance of various ion channels. Using observations of voltage alone we show how to estimate the unknown parameters and unobserved state variables of an HH model in the expected circumstance that the measurements are noisy, the model has errors, and the state of the neuron is not known when observations commence. The joint probability distribution of the observed membrane voltage and the unobserved state variables and parameters of these models is a path integral through the model state space. The solution to this integral allows estimation of the parameters and thus a characterization of many biological properties of interest, including channel complement and density, that give rise to a neuron’s electrophysiological behavior. This paper describes a method for directly evaluating the path integral using a Monte Carlo numerical approach. This provides estimates not only of the expected values of model parameters but also of their posterior uncertainty. Using test data simulated from neuronal models comprising several common channels, we show that short (<50 ms) intracellular recordings from neurons stimulated with a complex time-varying current yield accurate and precise estimates of the model parameters as well as accurate predictions of the future behavior of the neuron. We also show that this method is robust to errors in model specification, supporting model development for biological preparations in which the channel expression and other biophysical properties of the neurons are not fully known.

Keywords

Data assimilation Neuronal dynamics Ion channel properties Markov Chain Monte Carlo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel HD (2009) Effective actions for statistical data assimilation. Phys Lett A 373(44): 4044–4048CrossRefGoogle Scholar
  2. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc B 72(3): 269–342. doi: 10.1111/j.1467-9868.2009.00736.x CrossRefGoogle Scholar
  3. Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1(1): 7–18. doi: 10.3389/neuro.01.1.1.001.2007 PubMedCrossRefGoogle Scholar
  4. Evensen G (2009) Data assimilation: the ensemble Kalman filter. 2nd edn. Springer, BerlinGoogle Scholar
  5. Graham L (2002) In: Arbib MA (ed) The handbook for brain theory and neural networks. MIT Press, Cambridge, pp 164–170Google Scholar
  6. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1): 97–109. doi: 10.1093/biomet/57.1.97 CrossRefGoogle Scholar
  7. Huys QJM, Paninski L (2009) Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol 5(5): e1000379. doi: 10.1371/journal.pcbi.1000379 PubMedCrossRefGoogle Scholar
  8. Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6): 309–316. doi: 10.1016/j.tins.2008.03.004 PubMedCrossRefGoogle Scholar
  9. Johnston D, Wu SMS (1995) Foundations of cellular neurophysiology. MIT Press, CambridgeGoogle Scholar
  10. Lepora NF, Overton PG, Gurney K (2011) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci. doi: 10.1007/s10827-011-0331-2
  11. Mackay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, CambridgeGoogle Scholar
  12. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431(1): 291–318PubMedGoogle Scholar
  13. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi: 10.1063/1.1699114 CrossRefGoogle Scholar
  14. Neal RM (1993) Probabilistic inference using Markov chain Monte Carlo methods. Tech. Rep. CRG-TR-93-1, University of TorontoGoogle Scholar
  15. Toth BA, Kostuk M, Meliza CD, Abarbanel HDI, Margoliash D (2011) Dynamical estimation of neuron and network properties I: variational methods. Biol Cybern 105(3): 217–237PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mark Kostuk
    • 1
  • Bryan A. Toth
    • 1
  • C. Daniel Meliza
    • 2
  • Daniel Margoliash
    • 2
  • Henry D. I. Abarbanel
    • 3
  1. 1.Department of PhysicsUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUSA
  3. 3.Marine Physical Laboratory, Department of Physics (Scripps Institution of Oceanography), Center for Theoretical Biological PhysicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations