Biological Cybernetics

, Volume 106, Issue 1, pp 27–36 | Cite as

Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling

Open Access
Original Paper

Abstract

Tinnitus is a deafferentation-induced phantom phenomenon characterized by abnormal cerebral synchrony and connectivity. Computationally, we show that desynchronizing acoustic coordinated reset (CR) stimulation can effectively counteract both up-regulated synchrony and connectivity. CR stimulation has initially been developed for the application to electrical deep brain stimulation. We here adapt this approach to non-invasive, acoustic CR stimulation. For this, we use the tonotopic organization of the central auditory system and replace electrical stimulation bursts applied to different brain sites by acoustically delivered tones of different pitch. Based on our simulations, we propose non-invasive acoustic CR stimulation as a possible novel therapy for tinnitus.

Keywords

Tinnitus Coordinated reset Anti-kindling Spike timing-dependent plasticity Multistability 

References

  1. Baer SM, Gaekel EM (2008) Slow acceleration and deacceleration through a hopf bifurcation: power ramps, target nucleation, and elliptic bursting. Phys Rev E 78(3): 036205CrossRefGoogle Scholar
  2. Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86(11): 2564–2578PubMedCrossRefGoogle Scholar
  3. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464–10472PubMedGoogle Scholar
  4. Calford M, Rajan R, Irivine D (1993) Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone induced temporary threshold shift. J Neurosci 55: 953–964CrossRefGoogle Scholar
  5. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci 31: 25–46PubMedCrossRefGoogle Scholar
  6. Debanne D, Gahweiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampus slice cultures. J Physiol 507: 237–247PubMedCrossRefGoogle Scholar
  7. de la Rocha J, Marchetti C, Schiff M, Reyes AD (2008) Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition. J Neurosci 28(37): 9151–9163PubMedCrossRefGoogle Scholar
  8. De Ridder D, van der Loo E, Vanneste S, Gais S, Plazier M, Kovacs S, Sunaert S, Menovsky T, van de Heyning P (2011) Theta-gamma dysrhythmia and auditory phantom perception case report. J Neurosurg 114(4):912–921PubMedCrossRefGoogle Scholar
  9. Dohrmann K, Elbert T, Schlee W, Weisz N (2007) Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci 25:371–378PubMedGoogle Scholar
  10. Dominguez M, Becker S, Bruce I, Read H (2006) A spiking neuron model of cortical correlates of sensorineural hearing loss: spontaneous firing, synchrony, and tinnitus. Neural Comput 18(12):2942–2958PubMedCrossRefGoogle Scholar
  11. Eggermont J (2003) Central tinnitus. Auris Nasus Larynx 30:S7–S12PubMedCrossRefGoogle Scholar
  12. Eggermont J, Roberts L (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682PubMedCrossRefGoogle Scholar
  13. Elbert T, Flor H, Birbaumer N, Knecht S, Labrig W, Taub E (1994) Extensive reorganization of the somatosensory cortex in adult humas after nervous system injury.Neuroreport 5:2593–2597PubMedCrossRefGoogle Scholar
  14. Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1): 45–56PubMedCrossRefGoogle Scholar
  15. Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 256(1-2):104–117PubMedCrossRefGoogle Scholar
  16. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birnbaumer N, LarbrigW, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484PubMedCrossRefGoogle Scholar
  17. Gerken GM (1996) Central tinnitus and lateral inhibition: an auditory brainstem model. Hear Res 97(1-2):75–83PubMedGoogle Scholar
  18. GerstnerW, KistlerWM(2002) Spiking neuronmodels: single neurons, populations, plasticity. Cambridge University Press, CambridgeGoogle Scholar
  19. Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–81PubMedCrossRefGoogle Scholar
  20. Golomb D, Rinzel J (1993) Dynamics of globally coupled inhibitory neurons with heterogeneity. Phys Rev E 48:4810–4814CrossRefGoogle Scholar
  21. Gulick W, Gescheider G, Frisina R (1989) Hearing: physiological acoustics, neural coding, and psychoacoustics. Oxford University Press, OxfordGoogle Scholar
  22. Hauptmann C, Tass PA (2007) Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems 89: 173–181PubMedCrossRefGoogle Scholar
  23. Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin N Am 36:239–248CrossRefGoogle Scholar
  24. Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2005) Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb Cortex 15(6):834–845PubMedCrossRefGoogle Scholar
  25. Irvine D, Rajan R, Brown M (2001) Injury- and use-related plasticity in adult auditory cortex. Audiol Neurootol 6:192–195PubMedCrossRefGoogle Scholar
  26. Izhikevich EM (2001) Synchronization of elliptic bursters. SIAM Rev 43:315–344CrossRefGoogle Scholar
  27. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, CambridgeGoogle Scholar
  28. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8: 221–254PubMedCrossRefGoogle Scholar
  29. Kahlbrock N, Weisz N (2008) transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power. BMC Biol 6: 4PubMedCrossRefGoogle Scholar
  30. Klimesch W, Hanslmayr S, Sauseng P, Gruber W (2006) Distinguishing the evoked response from phase reset: A comment to mäkinen et al. Neuroimage 29: 808–811PubMedCrossRefGoogle Scholar
  31. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275:213–215PubMedCrossRefGoogle Scholar
  32. McFadden D (1982) Tinnitus: facts, theories, and treatments. National Academies Press, Washington, DCGoogle Scholar
  33. MühlnickelW, Elbert T, Taub E, Flor E (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–10343PubMedCrossRefGoogle Scholar
  34. Mulders WHAM, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164(2): 733–746PubMedCrossRefGoogle Scholar
  35. Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183(1-2):137–153PubMedCrossRefGoogle Scholar
  36. Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17(6):559–563PubMedCrossRefGoogle Scholar
  37. Ortmann M, Muller N, Schlee W, Weisz N (2011) Rapid increases of gamma power in the auditory cortex following noise trauma in humans. Eur J Neurosci 33(3): 568–575PubMedCrossRefGoogle Scholar
  38. Parra LC, Pearlmutter BA (2007) Illusory percepts from auditory adaptation. J Acoust Soc Am 121(3):1632–1641PubMedCrossRefGoogle Scholar
  39. Patuzzi R, Robertson D (1988) Tuning in the mammalian cochlea. Physiol Rev 68(4):1009–1082PubMedGoogle Scholar
  40. Popovych OV, Tass PA (2011) Macroscopic entrainment of periodically forced oscillatory ensembles. Prog Biophys Mol Biol 105:98–108PubMedCrossRefGoogle Scholar
  41. Rajan R, Irvine D (1998) Neuronal responses across cortical field a1 in plasticity induced by peripheral auditory organ damage. Audiol Neurootol 3:123–144PubMedCrossRefGoogle Scholar
  42. Richardson KA, Gluckman BJ, Weinstein SL, Glosch CE, Moon JB, Gwinn RP, Gale K, Schiff SJ (2003) In vivo modulation of hippocampal epileptiform activity with radial electric fields. Epilepsia 44(6):768–777PubMedCrossRefGoogle Scholar
  43. Rinzel JA (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences, lecture notes in biomathematics 71. Springer-Verlag, New York, pp 267–281Google Scholar
  44. Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory-cortex of guinea-pigs with partial unilateral deafness. J Comp Neurol 282(3): 456–471PubMedCrossRefGoogle Scholar
  45. Schaette R, Kempter R (2006) Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci 23:3124–3138PubMedCrossRefGoogle Scholar
  46. Schaette R, Kempter R (2009) Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J Neurophysiol 101(6):3042–3052PubMedCrossRefGoogle Scholar
  47. Schaette R, Konig O, Hornig D, Gross M, Kempter R (2010) Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range. Hear Res 269(1-2):95–101PubMedCrossRefGoogle Scholar
  48. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137: 1087–1106PubMedCrossRefGoogle Scholar
  49. Tass P (2002) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87: 102–115PubMedCrossRefGoogle Scholar
  50. Tass P, Hauptmann C (2007) Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol 64:53–61PubMedCrossRefGoogle Scholar
  51. Tass P, Silchenko A, Hauptmann C, Barnikol U, Speckmann EJ (2009) Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E 80:011902CrossRefGoogle Scholar
  52. Tass PA (2003) Desynchronization by means of a coordinated reset of neural sub-populations—a novel technique for demand-controlled deep brain stimulation. Prog Theor Phys Suppl 150: 281–296CrossRefGoogle Scholar
  53. Tass PA (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89: 81–88PubMedCrossRefGoogle Scholar
  54. Tass PA, Hauptmann C (2009) Anti-kindling achieved by stimulation targeting slow synaptic dynamics. Restor Neurol Neurosci 27(6):589–609PubMedGoogle Scholar
  55. Tass PA, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94(1):58–66PubMedCrossRefGoogle Scholar
  56. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7): 2963–2976PubMedGoogle Scholar
  57. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLOs Med 2: e153PubMedCrossRefGoogle Scholar
  58. Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222: 108–114PubMedCrossRefGoogle Scholar
  59. Weisz N, Mueller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007) The neural code of auditory phantom perception. J Neurosci 27: 1479–1484PubMedCrossRefGoogle Scholar
  60. Wittenberg GM, Wang SSH (2006) Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J Neurosci 26(24): 6610–6617PubMedCrossRefGoogle Scholar
  61. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5: 24–34PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of Neuroscience and Medicine - Neuromodulation (INM-7), Research Center JülichJülichGermany
  2. 2.Department of Stereotaxic and Functional NeurosurgeryUniversity HospitalCologneGermany

Personalised recommendations