Advertisement

Biological Cybernetics

, Volume 106, Issue 1, pp 37–49 | Cite as

Predictive coding accounts for V1 response properties recorded using reverse correlation

  • M. W. Spratling
Original Paper

Abstract

PC/BC (“Predictive coding/Biased competition”) is a simple computational model that has previously been shown to explain a very wide range of V1 response properties. This article extends work on the PC/BC model of V1 by showing that it can also account for V1 response properties measured using the reverse correlation methodology. Reverse correlation employs an experimental procedure that is significantly different from that used in more typical neurophysiological experiments, and measures some distinctly different response properties in V1. Despite these differences PC/BC successfully accounts for the data. The current results thus provide additional support for the PC/BC model of V1 and further demonstrate that PC/BC offers a unified explanation for the seemingly diverse range of behaviours observed in primary visual cortex.

Keywords

Primary visual cortex Predictive coding Receptive field Orientation-tuning Spatial-frequency tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bredfeldt CE, Ringach DL (2002) Dynamics of spatial frequency tuning in macaque V1. J Neurosci 22(5): 1976–1984PubMedGoogle Scholar
  2. Chen G, Dan Y, Li C-Y (2005) Stimulation of non-classical receptive field enhances orientation selectivity in the cat. J Physiol 564(1): 233–243PubMedCrossRefGoogle Scholar
  3. Chen X, Han F, Poo M-M, Dan Y (2007) Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1). Proc Natl Acad Sci USA 104(48): 19120–19125PubMedCrossRefGoogle Scholar
  4. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12: 199–213PubMedGoogle Scholar
  5. Daugman JG (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res 20: 847–856PubMedCrossRefGoogle Scholar
  6. Daugman JG (1988) Complete discrete 2-D Gabor transformations by neural networks for image analysis and compression. IEEE Trans Acoust 36(7): 1169–1179CrossRefGoogle Scholar
  7. De Valois RL, Cottaris NP, Mahon LE, Elfar SD, Wilson JA (2000) Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res 40(27): 3685–3702PubMedCrossRefGoogle Scholar
  8. DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol 69: 1091–1117PubMedGoogle Scholar
  9. DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18(10): 451–458PubMedCrossRefGoogle Scholar
  10. Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ (2006) Selectivity for multiple stimulus features in retinal ganglion cells. J Neurophysiol 96: 2724–2738PubMedCrossRefGoogle Scholar
  11. Felsen G, Shen YS, Yao H, Spor G, Li C, Dan Y (2002) Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36(5): 945–954PubMedCrossRefGoogle Scholar
  12. Felsen G, Touryan J, Han F, Dan Y (2005) Cortical sensitivity to visual features in natural scenes. PLoS Biol 3(10): e342PubMedCrossRefGoogle Scholar
  13. Jehee JFM, Ballard DH (2009) Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Comput Biol 5(5): e1000373PubMedCrossRefGoogle Scholar
  14. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6): 1233–1258PubMedGoogle Scholar
  15. Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58(6): 1187–1211PubMedGoogle Scholar
  16. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10): 959–971CrossRefGoogle Scholar
  17. Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am A 70: 1297–1300CrossRefGoogle Scholar
  18. Mazer JA, Vinje WE, McDermott J, Schiller PH, Gallant JL (2002) Spatial frequency and orientation tuning dynamics in area V1. Proc Natl Acad Sci USA 99(3): 1645–1650PubMedCrossRefGoogle Scholar
  19. Neri P, Heeger DJ (2002) Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nat Neurosci 5(8): 812–816PubMedGoogle Scholar
  20. Nykamp DQ, Ringach DL (2002) Full identification of a linear-nonlinear system via cross-correlation analysis. J Vis 2: 1–11PubMedCrossRefGoogle Scholar
  21. Reid RC, Victor JD, Shapley RM (1997) The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14: 1015–1027PubMedCrossRefGoogle Scholar
  22. Ringach D, Shapley R (2004) Reverse correlation in neurophysiology. Cogn Sci 28(2): 147–166CrossRefGoogle Scholar
  23. Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol 88(1): 455–463PubMedGoogle Scholar
  24. Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(3): 717–728PubMedCrossRefGoogle Scholar
  25. Ringach DL, Hawken MJ, Shapley R (1997a) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387: 281–284PubMedCrossRefGoogle Scholar
  26. Ringach DL, Hawken MJ, Shapley R (2002) Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J Vis 2: 12–24PubMedCrossRefGoogle Scholar
  27. Ringach DL, Hawken MJ, Shapley R (2003) Dynamics of orientation tuning in macaque V1: The role of global and tuned suppression. J Neurophysiol 90(1): 342–352PubMedCrossRefGoogle Scholar
  28. Ringach DL, Sapiro G, Shapley R (1997b) A subspace reverse correlation method for the study of visual neurons. Vis Res 37: 2455–2464PubMedCrossRefGoogle Scholar
  29. Schwartz, O., Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6(4):484–507Google Scholar
  30. Shapley R, Hawken M, Ringach DL (2003) Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38(5): 689–699PubMedCrossRefGoogle Scholar
  31. Sharpee TO, Miller KD, Stryker MP (2008) On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. J Neurophysiol 99(5): 2496–2509PubMedCrossRefGoogle Scholar
  32. Sharpee TO, Rust NC, Bialek W (2004) Analysing neural responses to natural signals: maximally informative dimensions. Neural Comput 16: 223–250PubMedCrossRefGoogle Scholar
  33. Sharpee TO, Victor JD (2009) Contextual modulation of v1 receptive fields depends on their satial symmetry. J Comput Neurosci 26: 203–218PubMedCrossRefGoogle Scholar
  34. Smyth D, Tolhurst DJ, Thompson ID (2000) Simple-cell receptive field reconstruction from natural-scene stimuli in ferret primary visual cortex. J Physiol (Lond) 527:93–94Google Scholar
  35. Smyth D, Willmore B, Baker GE, Thompson ID, Tolhurst DJ (2003) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci 23: 4746–4759PubMedGoogle Scholar
  36. Spratling MW (2010) Predictive coding as a model of response properties in cortical area V1. J Neurosci 30(9): 3531–3543PubMedCrossRefGoogle Scholar
  37. Spratling MW (2011) A single functional model accounts for the distinct properties of suppression in cortical area V1. Vis Res 51(6): 563–576PubMedCrossRefGoogle Scholar
  38. Spratling MW (2012). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput 24(1):64–103Google Scholar
  39. Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fileds measured with natural images. Neuron 45: 781–791PubMedCrossRefGoogle Scholar
  40. Usrey WM, Sceniak MP, Chapman B (2003) Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. J Neurophysiol 89(2): 1003–1015PubMedCrossRefGoogle Scholar
  41. Xing D, Shapley RM, Hawken MJ, Ringach DL (2005) Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. J Neurophysiol 94(1): 799–812PubMedCrossRefGoogle Scholar
  42. Xing D, Yeh C-I, Shapley RM (2010) Generation of black-dominant responses in V1 cortex. J Neurosci 30(40): 13504–13512PubMedCrossRefGoogle Scholar
  43. Yeh C-I, Xing D, Williams PE, Shapley RM (2009) Stimulus ensemble and cortical layer determine V1 spatial receptive fields. Proc Natl Acad Sci USA 106(34): 14652–14657PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Division of Engineering, Department of InformaticsKing’s College London StrandLondonUK

Personalised recommendations