Biological Cybernetics

, 105:121 | Cite as

Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions

  • Hassan El Makssoud
  • David Guiraud
  • Philippe Poignet
  • Mitsuhiro Hayashibe
  • Pierre-Brice Wieber
  • Ken Yoshida
  • Christine Azevedo-Coste
Original Paper

Abstract

In this article, we describe an approach to model the electromechanical behavior of the skeletal muscle based on the Huxley formulation. We propose a model that complies with a well established macroscopic behavior of striated muscles where force-length, force–velocity, and Mirsky–Parmley properties are taken into account. These properties are introduced at the microscopic scale and related to a tentative explanation of the phenomena. The method used integrates behavior ranging from the microscopic to the macroscopic scale, and allows the computation of the dynamics of the output force and stiffness controlled by EMG or stimulation parameters. The model can thus be used to simulate and carry out research to develop control strategies using electrical stimulation in the context of rehabilitation. Finally, through animal experiments, we estimated model parameters using a Sigma Point Kalman Filtering technique and dedicated experimental protocols in isometric conditions and demonstrated that the model can accurately simulate individual variations and thus take into account subject dependent behavior.

Keywords

Muscle model Parameters identification Kalman filtering Electrical stimulation 

References

  1. Benoussaad M, Hayashibe M, Fattal C, Poignet P, Guiraud D (2009) Identification and validation of FES physiological musculoskeletal model in paraplegic subjects. EMBC: Engineering in Medicine and Biology Society, Minneapolis, MN, USAGoogle Scholar
  2. Benoussaad M, Guiraud D, Poignet P (2009) Physiological musculoskeletal model identification for the lower limbs control of paraplegic under implanted FES. IROS: The IEEE/RSJ international conference on intelligent robots and systems. St. Louis, MO, USAGoogle Scholar
  3. Bestel J (2000) Modèle différentiel de la contraction musculaire controlée. Application au système cardio-vasculaire. PhD Thesis, University Paris IX DauphineGoogle Scholar
  4. Bestel J, Sorine M (2000) A differential model of muscle contraction and applications. In: schloessmann Seminar on mathematical models in biology, chemistry and physics. Max Plank Society, Bad Lausick, Germany, pp 19–23Google Scholar
  5. Crago PE, Peckham PH, Thrope GB (1980) Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng 27(12): 679–684PubMedCrossRefGoogle Scholar
  6. Davis R, Houdayer T, Andrews B, Emmons S, Patrick J (1997) Paraplegia: prolonged closed-loop standing with implanted nucleus FES-22 stimulator and Andrews’s foot-ankle orthosis”. Proc XIIth World Soc Stereotact Funct Neurosurg 69: 281–287CrossRefGoogle Scholar
  7. Ding J, Chou LW, Kesar TM, Lee SCK, Johnston TE, Wexler AS, Macleod SA (2007) Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injury. Muscle Nerve 36: 214–222PubMedCrossRefGoogle Scholar
  8. Donaldson NN, Perkins TA, Worley ACM (1997) Lumbar root stimulation for restoring leg function: stimulator and measurement of muscle actions. Artif Organs 21: 247–249PubMedCrossRefGoogle Scholar
  9. Durfee KW (1993) Control of standing and gait using electrical stimulation: influence of muscle model complexity on control strategy. Prog Brain Res 97: 369–381PubMedCrossRefGoogle Scholar
  10. Durfee KW, MacLean KE (1989) Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans Biomed Eng 36: 654–667PubMedCrossRefGoogle Scholar
  11. El Makssoud H (2005) Modélisation et Identification des Muscles Squelettiques sous Stimulation Electrique Fonctionnelle. PhD Thesis, University of Montpellier IIGoogle Scholar
  12. El Makssoud H, Poignet P, Guiraud D (2003) Modeling of the skeletal muscle under functional electrical stimulations. International Functional Electrical Stimulation Society, Australia, pp 206–209Google Scholar
  13. El Makssoud H, Guiraud D, Poignet P (2004) Mathematical muscle model for functional electrical stimulation control strategies, IEEE ICRA. New Orleans, LA, USA, pp 1282–1287Google Scholar
  14. Furman S, Schwedel JB (1959) An intracardiac pacemaker for Stokes-Adams seizures. N Engl J Med 261: 943–948PubMedCrossRefGoogle Scholar
  15. Guiraud D, Poignet P, Wieber PB, El Makssoud H, Pierrot F, Brogliato B, Fraisse P, Dombre E, Divoux JL, Rabischong P (2003) Modeling of the human paralysed lower limb under FES. IEEE international conference on robotics and automation Taipei, Taiwan, pp 2218–2223Google Scholar
  16. Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P (2006) An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 3: 268–275PubMedCrossRefGoogle Scholar
  17. Guiraud D, Stieglitz T, Taroni G, Divoux JL (2006) Original electronic design to perform epimysial and neural stimulation in paraplegia. J Neural Eng 3: 276–286PubMedCrossRefGoogle Scholar
  18. Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 28: 143–157PubMedCrossRefGoogle Scholar
  19. Hayashibe M, Guiraud D, Poignet P (2009) EMG-to-force estimation with full-scale physiology based muscle model. IROS 2009: The 2009 IEEE/RSJ international conference on intelligent robots and systems, Saint Louis, USA, pp 1621–1626Google Scholar
  20. Hayashibe M, Benoussaad M, Guiraud D, Poignet P, Fattal C (2010) Nonlinear identification method corresponding to muscle property variation in FES—experiments in Paraplegic Patients. IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, pp 401–406Google Scholar
  21. Hill AV (1938) The heat of shortening and the dynamic constants in muscle. Proc R Soc, London, Sre. B 126: 136–195CrossRefGoogle Scholar
  22. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7: 255–318PubMedGoogle Scholar
  23. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3): 401–422CrossRefGoogle Scholar
  24. Keener J, Sneyd J (1998) Systems physiology. Part II. In: Marsden JE, Sirovich L, Wiggns S (eds) Mathematical physiology. Springer Verlag, NYC, pp 542–578Google Scholar
  25. Kobetic R, Triolo RJ, Marsolais EB (1997) Muscle selection and walking performance of multichannel fes systems for ambulation in Paraplegia. IEEE Trans Rehabil Eng 5: 23–29PubMedCrossRefGoogle Scholar
  26. Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, Polando G, Marsolais EB, Davis JA (1999) Implanted functional electrical stimulation system for mobility in Paraplegia: a follow-up case report. IEEE Trans Rehabil Eng 7(4): 390–398PubMedCrossRefGoogle Scholar
  27. Kralj A, Bajd T (1989) Functional electrical stimulation: standing and walking after spinal cord injury. CRC Press Inc, Boca RatonGoogle Scholar
  28. Leeuwen JL (1991) Optimum power output and structural design of sarcomeres. J Theor Biol 19: 229–256CrossRefGoogle Scholar
  29. Liberson WT, Holmquest ME, Scot D, Dow M (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of gait of hemiplegic patients. Arch Phys Med Rehabil 42: 101–105PubMedGoogle Scholar
  30. Loeb GE, Peck RA, Moore WH, Hood K (2001) BIONtm system for distributed neural prosthetic interfaces. Med Eng Phys 23: 9–18PubMedCrossRefGoogle Scholar
  31. Merwe R, Wan E (2003) Sigma-Point Kalman Filters for probabilistic inference in dynamic state-space models. Workshop on Advances in Machine Learning, MontrealGoogle Scholar
  32. Mirsky I, Parmley WW (1973) Assessment of passive elactic stiffness for isolated heart muscle and intact heart. Circ Res 33: 233–243PubMedGoogle Scholar
  33. Mohammed S, El Makssoud H, Fraisse P, Guiraud D, Poignet P (2005) Robust control law strategy based on high order sliding mode: towards a muscle control. International conference on intelligent robots and systems, AlbertaGoogle Scholar
  34. Mohammed S, Fraisse P, Guiraud D, Poignet P, El Makssoud H (2005) Towards a co-contraction muscle control strategy, Conference on Decision and Control, CDC, pp 7428–7483Google Scholar
  35. Papaiordanidou M, Guiraud D, Varray A (2010a) Does central fatigue exist under low-frequency stimulation of a low fatigue-resistant muscle?. Eur J Appl Physiol 110(4): 815–823PubMedCrossRefGoogle Scholar
  36. Papaiordanidou M, Guiraud D, Varray A (2010b) Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve 41: 54–62PubMedCrossRefGoogle Scholar
  37. Perreault EJ, Heckman CJ, Sandercock TG (2003) Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J Biomech 36: 211–218PubMedCrossRefGoogle Scholar
  38. Popovic D, Sinkjaer T (2000) Control of movement for the physically disabled: control for rehabilitation technology. Spinger-Verlag, LondonCrossRefGoogle Scholar
  39. Rabischong E, Guiraud D (1993) Determination of fatigue in the electrically stimulated quadriceps muscle and relative effect of ischaemia. J Biomed Eng 15: 443–450PubMedCrossRefGoogle Scholar
  40. Rack PMH, Westbury DR (1969) The effects of length and stimulus rate on tension in the isometric soleus muscle. J Physiol 204: 443–460PubMedGoogle Scholar
  41. Riener R, Quintern J, Psaier E, Schmidt G (1996) Physiological based multi-input model of muscle activation. In: Pedotti A, Ferrarin F, Quintern J, Riener R (eds) Neuroprosthetics from basic research to clinical applications, Chap. 2. Springer-verlag, New York, pp 95–114Google Scholar
  42. Riener R, Fuhr T (1998) Patient-driven control of FES supported standing up: a simulation study. IEEE Trans Rehabil Eng 6: 113–1240PubMedCrossRefGoogle Scholar
  43. Riener R (1999) Model-based development of neuroprostheses for paraplegic patients. R Soc 354: 877–894Google Scholar
  44. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28): 1743–1759CrossRefGoogle Scholar
  45. Shi-Ping M, Zahalak GI (1987) Simple self-consistent distribution-moment model for muscle: chemical energy and heat rates. Math Biosci 84: 211–230CrossRefGoogle Scholar
  46. Sommacal L, Dossat A, Melchior P, Petit J, Cabelguen JM, Oustaloup A, Ljspeert AJ (2006) A comparison between two fractional multimodels structures for rat muscle modelling. 6th IFAC symposium on modelling and control in biomedical systems, Reims, France, pp 20–22Google Scholar
  47. Wexler AS, Ding J, Binder Macleod SA (1997) A mathematical model that predicts skeletal muscle force. IEEE Trans Biomed Eng 4(5): 337–348CrossRefGoogle Scholar
  48. Zajac FE (1989) Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. Crit Rev Biomed Eng 17: 359–411PubMedGoogle Scholar
  49. Zahalak GI (1981) A distribution-moment approximation for kinetic theories of muscular contraction. Math Biosci 55: 89–114CrossRefGoogle Scholar
  50. Zahalak GI (1992) An overview of muscle modelling. Neural prostheses. In: Stein R, Peckham H, Popovic D (eds) Replacing motor function after disease or disability. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hassan El Makssoud
    • 1
  • David Guiraud
    • 2
  • Philippe Poignet
    • 2
  • Mitsuhiro Hayashibe
    • 2
  • Pierre-Brice Wieber
    • 3
  • Ken Yoshida
    • 4
  • Christine Azevedo-Coste
    • 2
  1. 1.Azm center for research in biotechnology and its applications, Lebanese UniversityTripoliLebanon
  2. 2.DEMAR team, INRIA and University of Montpellier 2 - LIRMMMontpellier Cedex 5France
  3. 3.BIPOP team, INRIA, InnovalleSt. Ismier CedexFrance
  4. 4.Department of Biomedical EngineeringIndiana University-Purdue UniversityIndianapolisUSA

Personalised recommendations