Biological Cybernetics

, Volume 104, Issue 1–2, pp 137–160 | Cite as

Action understanding and active inference

Original Paper

Abstract

We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action–observation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference.

Keywords

Action–observation Mirror-neuron system Inference Precision Free-energy Perception Generative models Predictive coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovich V, Tristan I, Huerta R, Rabinovich MI (2008) Winnerless competition principle and prediction of the transient dynamics in a Lotka–Volterra model. Chaos 18(4): 043103PubMedCrossRefGoogle Scholar
  2. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4: 267–278PubMedCrossRefGoogle Scholar
  3. Arbib MA (2008) From grasp to language: embodied concepts and the challenge of abstraction. J Physiol (Paris) 102(1–3): 4–20CrossRefGoogle Scholar
  4. Arbib MA (2010) Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain Lang 112(1): 12–24PubMedCrossRefGoogle Scholar
  5. Ballard DH, Hinton GE, Sejnowski TJ (1983) Parallel visual computation. Nature 306: 21–26PubMedCrossRefGoogle Scholar
  6. Battaglia FP, Sutherland GR, McNaughton BL (2004) Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci 24(19): 4541–4550PubMedCrossRefGoogle Scholar
  7. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19(2): 442–477PubMedCrossRefGoogle Scholar
  8. Borghi AM, Gianelli C, Scorolli C (2010) Sentence comprehension: effectors and goals, self and others. An overview of experiments and implications for robotics. Front Neurorobot 4: 3 Jun 14Google Scholar
  9. Buccino G, Baumgaertner A, Colle L, Büchel C, Rizzolatti G, Binkofski F (2007) The neural basis for understanding non-intended actions. Neuroimage. 36(Suppl 2): T119–T127PubMedCrossRefGoogle Scholar
  10. Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9): 801–812PubMedCrossRefGoogle Scholar
  11. Butz M, Timmermann L, Gross J, Pollok B, Dirks M, Hefter H, Schnitzler A (2006) Oscillatory coupling in writing and writer’s cramp. J Physiol Paris 99(1): 14–20PubMedCrossRefGoogle Scholar
  12. Clark CR, Geffen GM, Geffen LB (1989) Catecholamines and the covert orientation of attention in humans. Neuropsychologia 27: 131–139PubMedCrossRefGoogle Scholar
  13. Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361PubMedCrossRefGoogle Scholar
  14. Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21: 4908–4914PubMedGoogle Scholar
  15. Davidson MC, Marrocco RT (2000) Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J Neurophysiol 83: 1536–1549PubMedGoogle Scholar
  16. Dayan P, Hinton GE, Neal RM (1995) The Helmholtz machine. Neural Comput 7: 889–904PubMedCrossRefGoogle Scholar
  17. Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120: 1763–1777PubMedCrossRefGoogle Scholar
  18. Del Giudice M, Manera V, Keysers C (2009) Programmed to learn? The ontogeny of mirror neurons. Dev Sci 12(2): 350–363PubMedCrossRefGoogle Scholar
  19. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18: 193–222PubMedCrossRefGoogle Scholar
  20. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91: 176–180PubMedGoogle Scholar
  21. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating?. Behav Brain Sci 11: 355–372Google Scholar
  22. Dragoi G, Buzsáki G (2006) Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50(1): 145–157PubMedCrossRefGoogle Scholar
  23. Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194(1): 39–58PubMedCrossRefGoogle Scholar
  24. Feldman H, Friston K (2010) Attention, uncertainty and free-energy. Front Hum Neurosci 4: 215. doi:10.3389/fnhum.2010.00215 PubMedCrossRefGoogle Scholar
  25. Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2): 146–150PubMedCrossRefGoogle Scholar
  26. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308: 662–667PubMedCrossRefGoogle Scholar
  27. Frank MJ, Scheres A, Sherman SJ (2007) Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 362(1485): 1641–1654PubMedCrossRefGoogle Scholar
  28. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25: 355–373PubMedCrossRefGoogle Scholar
  29. Fries P, Womelsdorf T, Oostenveld R, Desimone R (2008) The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 28(18): 4823–4835PubMedCrossRefGoogle Scholar
  30. Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4(11): e1000211PubMedCrossRefGoogle Scholar
  31. Friston K (2009) The free-energy principle: a rough guide to the brain?. Trends Cogn Sci 13(7): 293–301PubMedCrossRefGoogle Scholar
  32. Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol (Paris) 100(1–3): 70–87CrossRefGoogle Scholar
  33. Friston KJ, Daunizeau J, Kiebel SJ (2009) Reinforcement learning or active inference?. PLoS One 4(7): e6421PubMedCrossRefGoogle Scholar
  34. Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010a) Action and behavior: a free-energy formulation. Biol Cybern 102(3): 227–260PubMedCrossRefGoogle Scholar
  35. Friston K, Stephan K, Li B, Daunizeau J (2010b) Generalised filtering. Math Prob Eng. Article ID 621670Google Scholar
  36. Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286: 1692–1695PubMedCrossRefGoogle Scholar
  37. Gallese V, Goldman A (1998) Mirror-neurons and the simulation theory of mind reading. Trends Cogn Sci 2: 493–501PubMedCrossRefGoogle Scholar
  38. Gallese V, Fadiga L, Fogassi L, G Rizzolatti (1996) Action recognition in the premotor cortex. Brain 119: 593–609PubMedCrossRefGoogle Scholar
  39. Geisler C, Diba K, Pastalkova E, Mizuseki K, Royer S, Buzsáki G (2010) Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc Natl Acad Sci USA 107(17): 7957–7962PubMedCrossRefGoogle Scholar
  40. Gómez CM, Flores A, Digiacomo MR, Ledesma A, González-Rosa J (2008) P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neurosci Lett 430: 181–185PubMedCrossRefGoogle Scholar
  41. Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26(4): 590–616PubMedCrossRefGoogle Scholar
  42. Graziano MS (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96(18): 10418–10421PubMedCrossRefGoogle Scholar
  43. Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29: 105–134PubMedCrossRefGoogle Scholar
  44. Gregory RL (1968) Perceptual illusions and brain models. Proc R Soc Lond B 171: 179–196CrossRefGoogle Scholar
  45. Gregory RL (1980) Perceptions as hypotheses. Phil Trans R Soc Lond B 290: 181–197CrossRefGoogle Scholar
  46. Grèzes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions?. Neuroimage 13: 775–785PubMedCrossRefGoogle Scholar
  47. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12: 711–720PubMedCrossRefGoogle Scholar
  48. Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26: 1133–1137PubMedCrossRefGoogle Scholar
  49. Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30(1–2): 133–135PubMedCrossRefGoogle Scholar
  50. Hazy TE, Frank MJ, O’reilly RC (2007) Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci 362(1485): 1601–1613PubMedCrossRefGoogle Scholar
  51. Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454: 1110–1114PubMedCrossRefGoogle Scholar
  52. Ijspeert JA, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In International Conference on Robotics and Automation (ICRA 2002), pp 1398–1403Google Scholar
  53. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18(7): 314–320PubMedCrossRefGoogle Scholar
  54. Jerbi K, Lachaux JP, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci USA 104(18): 7676–7681PubMedCrossRefGoogle Scholar
  55. Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci 8: 501–507PubMedCrossRefGoogle Scholar
  56. Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11(6): 417–428PubMedCrossRefGoogle Scholar
  57. Kiebel SJ, von Kriegstein K, Daunizeau J, Friston KJ (2009a) Recognizing sequences of sequences. PLoS Comput Biol 5(8): e1000464PubMedCrossRefGoogle Scholar
  58. Kiebel SJ, Daunizeau J, Friston KJ (2009b) Perception and hierarchical dynamics. Front Neuroinf 3: 20Google Scholar
  59. Kilner JM, Vargas C, Duval S, Blakemore S-J, Sirigu A (2004) Motor activation prior to observation of a predicted movement. Nat Neurosci 7: 1299–1301PubMedCrossRefGoogle Scholar
  60. Kilner JM, Friston KJ, Frith CD (2007a) Predictive coding: an account of the mirror neuron system. Cogn Process 8(3): 159–166PubMedCrossRefGoogle Scholar
  61. Kilner JM, Friston KJ, Frith CD (2007b) The mirror-neuron system: a Bayesian perspective. Neuroreport 18(6): 619–623PubMedCrossRefGoogle Scholar
  62. Lee J, Fowler R, Rodney D, Cherney L, Small SL (2010) IMITATE: an intensive computer-based treatment for aphasia based on action observation and imitation. Aphasiology 24(4): 449–465PubMedCrossRefGoogle Scholar
  63. Longcamp M, Tanskanen T, Hari R (2006) The imprint of action: motor cortex involvement in visual perception of handwritten letters. Neuroimage 33(2): 681–688PubMedCrossRefGoogle Scholar
  64. Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128: 181–187PubMedCrossRefGoogle Scholar
  65. Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17: 1057–1074PubMedCrossRefGoogle Scholar
  66. Miall RC (2003) Connecting mirror neurons and forward models. Neuroreport 14(17): 2135–2137PubMedCrossRefGoogle Scholar
  67. Miura N, Sugiura M, Takahashi M, Sassa Y, Miyamoto A, Sato S, Horie K, Nakamura K, Kawashima R (2010) Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot. Soc Neurosci 5(1): 40–58PubMedCrossRefGoogle Scholar
  68. Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66: 241–251PubMedCrossRefGoogle Scholar
  69. Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24: 283–288PubMedCrossRefGoogle Scholar
  70. Namikawa J, Tani J (2010) Learning to imitate stochastic time series in a compositional way by chaos. Neural Netw 23(5): 625–638PubMedCrossRefGoogle Scholar
  71. O’Keefe J (1999) Do hippocampal pyramidal cells signal non-spatial as well as spatial information?. Hippocampus 9(4): 352–364PubMedCrossRefGoogle Scholar
  72. Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J Cogn Neurosci 6: 99–116CrossRefGoogle Scholar
  73. Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15(4): 831–864PubMedCrossRefGoogle Scholar
  74. Rabinovich M, Huerta R, Laurent G (2008) Neuroscience. Transient dynamics for neural processing. Science 321(5885): 48–50PubMedCrossRefGoogle Scholar
  75. Rao RP, Ballard DH (1998) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat Neurosci 2: 79–87CrossRefGoogle Scholar
  76. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61(2): 168–185PubMedCrossRefGoogle Scholar
  77. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27: 169–192PubMedCrossRefGoogle Scholar
  78. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2: 661–670PubMedCrossRefGoogle Scholar
  79. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5): 430–440PubMedCrossRefGoogle Scholar
  80. Schaal S, Mohajerian P, Ijspeert A (2007) Dynamics systems vs. optimal control: a unifying view. Prog Brain Res 165: 425–445PubMedCrossRefGoogle Scholar
  81. Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Biosci 6: D672–D684PubMedCrossRefGoogle Scholar
  82. Singer Y, Tishby N (1994) Dynamical encoding of cursive handwriting. Biol Cybern 71(3): 227–237PubMedCrossRefGoogle Scholar
  83. Takahashi H, Shibuya T, Kato M, Sassa T, Koeda M, Yahata N, Suhara T, Okubo Y (2008) Enhanced activation in the extrastriate body area by goal-directed actions. Psychiatry Clin Neurosci 62(2): 214–219PubMedCrossRefGoogle Scholar
  84. Tani J (2003) Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw 16(1): 11–23PubMedCrossRefGoogle Scholar
  85. Tani J, Ito M, Sugita Y (2004) Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Netw 17(8–9): 1273–1289PubMedCrossRefGoogle Scholar
  86. Todorov E, Li W, Pan X (2005) From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J Robot Syst 22(11): 691–710PubMedCrossRefGoogle Scholar
  87. Tsodyks M (1999) Attractor neural network models of spatial maps in hippocampus. Hippocampus 9(4): 481–489PubMedCrossRefGoogle Scholar
  88. Umilta MA, Kohler E, Gallesse V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) I know what you are doing. A neurophysiological study. Neuron 31: 155–165PubMedCrossRefGoogle Scholar
  89. Verschure T, Voegtlin PF, Douglas RJ (2003) Environmentally mediated synergy between perception and behavior in mobile robots. Nature 425: 620–624PubMedCrossRefGoogle Scholar
  90. Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14: 167–186PubMedGoogle Scholar
  91. Weber C, Wermter S, Elshaw M (2006) A hybrid generative and predictive model of the motor cortex. Neural Netw 19(4): 339–353PubMedCrossRefGoogle Scholar
  92. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269: 1880–1882PubMedCrossRefGoogle Scholar
  93. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358: 593–602PubMedCrossRefGoogle Scholar
  94. Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17(2): 245–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karl Friston
    • 1
  • Jérémie Mattout
    • 1
    • 2
  • James Kilner
    • 1
  1. 1.The Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK
  2. 2.InsermLyonFrance

Personalised recommendations