Biological Cybernetics

, Volume 104, Issue 1–2, pp 95–119 | Cite as

Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller

  • Arndt von TwickelEmail author
  • Ansgar Büschges
  • Frank Pasemann
Original Paper


This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287–300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.


Walking control Robotics Neural network Sensori-motor loops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2011_422_MOESM1_ESM.pdf (327 kb)
ESM 1 (PDF 327 kb)


  1. Alexander RM (1989) Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69: 1199–1227PubMedGoogle Scholar
  2. Azevedo C, Espiau B, Amblard B, Assaiante C (2007) Bipedal locomotion: toward unified concepts in robotics and neuroscience. Biol Cybern 96: 209–228PubMedCrossRefGoogle Scholar
  3. Bartling C, Schmitz J (2000) Reaction to disturbances of a walking leg during stance. J Exp Biol 203: 1211–1223PubMedGoogle Scholar
  4. Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, BerlinGoogle Scholar
  5. Bässler U (1988) Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J Exp Biol 136: 125–147Google Scholar
  6. Bässler U (1993) The femur-tibia control system of stick insects a model system for the study of the neural basis of joint control. Brain Res Rev 18(2): 207–226PubMedCrossRefGoogle Scholar
  7. Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27: 65–88PubMedCrossRefGoogle Scholar
  8. Beer RD (2006) Beyond control: the dynamics of brain-body-environment interaction in motor systems. In: Sternard D (eds) Progress in motor control V: a multidisciplinary perspective. Springer, Berlin, pp 7–24Google Scholar
  9. Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically inspired approaches to robotics—what can we learn from insects. Commun ACM 40(3): 31–38CrossRefGoogle Scholar
  10. Bekey GA (2005) Autonomous robots—from biological inspiration to implementation and control. MIT Press, CambridgeGoogle Scholar
  11. Biewener AA (2005) Biomechanical consequences of scaling. J Exp Biol 208: 1665–1676PubMedCrossRefGoogle Scholar
  12. Blaesing B, Cruse H (2004) Stick insect locomotion in a complex environment: climbing over large gaps. J Exp Biol 207: 1273–1286PubMedCrossRefGoogle Scholar
  13. Borgmann A, Scharstein H, Büschges A (2007) Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. J Neurophysiol 98: 1685–1696PubMedCrossRefGoogle Scholar
  14. Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29(9): 2972–2983PubMedCrossRefGoogle Scholar
  15. Brunn DE, Dean J (1994) Intersegmental and local interneurons in the metathorax of the stick insect carausius morosus that monitor middle leg position. J Neurophysiol 72(3): 1208–1219PubMedGoogle Scholar
  16. Bucher D, Akay T, DiCaprio RA, Büschges A (2003) Interjoint coordination in the stick insect leg-control system: the role of positional signaling. J Neurophysiol 89: 1245–1255PubMedCrossRefGoogle Scholar
  17. Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93: 1127–1135PubMedCrossRefGoogle Scholar
  18. Büschges A, Kittmann R, Schmitz J (1994) Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J Comp Physiol A 174: 685–700CrossRefGoogle Scholar
  19. Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57: 162–171PubMedCrossRefGoogle Scholar
  20. Calvitti A, Beer RD (2000) Analysis of a distributed model of leg coordination i. Individual coordination mechanisms. Biol Cybern 82: 197–206PubMedCrossRefGoogle Scholar
  21. Chiel HJ, Ting LH, Ekeberg O, Hartmann MJZ (2009) The brain in its body: Motor control and sensing in a biomechanical context. J Neurosci 29(41): 12807–12814PubMedCrossRefGoogle Scholar
  22. Cruse H (1976) The function of the legs in the free walking stick insect, carausius morosus. J Comp Physiol A 112: 235–262CrossRefGoogle Scholar
  23. Cruse H (1980) A quantitative model of walking incorporating central and peripheral influences i. The control of the individual leg. Biol Cybern 37: 131–136CrossRefGoogle Scholar
  24. Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods. Trends Neurosci 13: 15–21PubMedCrossRefGoogle Scholar
  25. Cruse H, Bartling C (1995) Movement of joint angles in the legs of a walking insect, carausius morosus. J Insect Physiol 41(9): 761–771CrossRefGoogle Scholar
  26. Cruse H, Schmitz J, Braun U, Schweins A (1993) Control of body height in a stick insect walking on a treadwheel. J Exp Biol 181(1): 141–155Google Scholar
  27. Cruse H, Kühn S, Park S, Schmitz J (2004) Adaptive control for insect leg position: controller properties depend on substrate compliance. J Comp Physiol A 190(12): 983–991CrossRefGoogle Scholar
  28. Cruse H, Dürr V, Schmitz J (2007) Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Trans R Soc A 365(1850): 221–250CrossRefGoogle Scholar
  29. Daun-Gruhn S (2010) A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci, pp 1–24., online first
  30. Dean J (1991) Effect of load on leg movement and step coordination of the stick insect carausius morosus. J Exp Biol 159: 449–471Google Scholar
  31. Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehmann S (2000) How animals move: an integrative view. Science 288: 100–106PubMedCrossRefGoogle Scholar
  32. Dürr V (2001) Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation. J Exp Biol 204: 1589–1604PubMedGoogle Scholar
  33. Dürr V (2005) Context-dependent changes in strength and efficacy of leg coordination mechanisms. J Exp Biol 208: 2253–2267PubMedCrossRefGoogle Scholar
  34. Dürr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33: 237–250PubMedCrossRefGoogle Scholar
  35. Ekeberg O, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33: 287–300PubMedCrossRefGoogle Scholar
  36. Fischer H, Schmidt J, Haas R, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. i. Coordination of motor activity. J Neurophysiol 85: 341–353PubMedGoogle Scholar
  37. Foth E, Graham D (1983) Influence of loading parallel to the body axis on the walking coordination of an insect—I. Ipsilateral effects. Biol Cybern 47(1): 17–23Google Scholar
  38. Frigon A, Rossignol S (2006) Experiments and models of sensorimotor interactions during locomotion. Biol Cybern 95(6): 607–627PubMedCrossRefGoogle Scholar
  39. Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158: 369–390PubMedGoogle Scholar
  40. Gabriel JP, Büschges A (2007) Control of stepping velocity in a single insect leg during walking. Philos Trans R Soc A 365: 251–271CrossRefGoogle Scholar
  41. Gabriel JP, Scharstein H, Schmidt J, Büschges A (2003) Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel. J Neurobiol 56: 237–251PubMedCrossRefGoogle Scholar
  42. Ghazi-Zahedi KM (2008) Self-regulating neurons. A model for synaptic plasticity in artificial recurrent neural networks. PhD thesis, University of OsnabrückGoogle Scholar
  43. Goslow GE, Reinking RM, Stuart DG (1973) The cat step cycle: hind limb joint angles and muscle lengths during unrestrained locomotion. J Morphol 141(1): 1–41PubMedCrossRefGoogle Scholar
  44. Graham D (1972) A behavioural analysis of the temporal organization of walking movements in the 1st instar and adult stick insect Carausius morosus. J Comp Physiol 81: 23–52CrossRefGoogle Scholar
  45. Graham D (1983) Insects are both impeded and propelled by their legs during walking. J Exp Biol 104: 129–137Google Scholar
  46. Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18: 31–140CrossRefGoogle Scholar
  47. Graham D, Cruse H (1981) Coordinated walking of stick insects on a mercury surface. J Exp Biol 92: 229–241Google Scholar
  48. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5): 751–766PubMedCrossRefGoogle Scholar
  49. Gruhn M, von Uckermann G, Westmark S, Wosnitza A, Büschges A, Borgmann A (2009) Control of stepping velocity in the stick insect carausius morosus. J Neurophysiol 102: 1180–1192PubMedCrossRefGoogle Scholar
  50. Guschlbauer C, Scharstein H, Büschges A, (2007) The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking muscle. J Exp Biol 210:1092–1108PubMedCrossRefGoogle Scholar
  51. Halbertsma J (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl 521: 1–75PubMedGoogle Scholar
  52. Hatsopoulos NG (1996) Coupling the neural and physical dynamics in rhythmic movements. Neural Comput 8: 567–581PubMedCrossRefGoogle Scholar
  53. Hess D, Büschges A (1997) Sensorimotor pathways involved in interjoint reflex action of an insect leg. J Neurobiol 33(7): 891–913PubMedCrossRefGoogle Scholar
  54. Hooper SL, Guschlbauer C, von Uckermann G, Büschges A (2007) Slow temporal filtering may largely explain the transformation of stick insect (carausius morosus) extensor motor neuron activity into muscle movement. J Neurophysiol 98: 1718–1732PubMedCrossRefGoogle Scholar
  55. Hooper SL, Guschlbauer C, Blümel M, Rosenbaum P, Gruhn M, Akay T, Büschges A (2009) Neural control of unloaded leg posture and of leg swing in stick insect cockroach, and mouse differs from that in larger animals. J Neurosci 29(13): 4109–4119PubMedCrossRefGoogle Scholar
  56. Hülse M, Pasemann F (2006) Modular design of irreducible systems. In: Nolfi S, et al (eds) From animals to Animats 9 (SAB 2006), LNAI, vol 4095. Springer, Berlin. pp 534–545Google Scholar
  57. Hülse M, Wischmann S, Pasemann F (2004) Structure and function of evolved neuro-controllers for autonomous robots. Connect Sci 16(4): 249–266CrossRefGoogle Scholar
  58. Hülse M, Wischmann S, von Twickel A, Manoonpong P, Pasemann F (2007) Dynamical systems in the sensorimotor loop—on the interrelation between internal and external mechanisms of evolved robot behavior. In: Lungarella M, et al (eds) 50 years of artificial intelligence, LNAI, vol 4850. Springer, Berlin, pp 186–195Google Scholar
  59. Ijspeert A, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817): 1416–1420PubMedCrossRefGoogle Scholar
  60. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4): 642–653PubMedCrossRefGoogle Scholar
  61. Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt Behav 9(1): 16–41CrossRefGoogle Scholar
  62. Komsuoglu H, Sohn K, Full RJ, Koditschek DE (2009) A physical model for dynamical arthropod running on level ground. In: Khatib O, et al (eds) Experimental robotics—the eleventh international symposium, Springer, pp 303–317Google Scholar
  63. Lévy J, Cruse H (2008) Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. J Comp Physiol A 194(8): 735–750CrossRefGoogle Scholar
  64. Lewinger WA, Rutter BL, Blümel M, Büschges A, Quinn RD (2006) Sensory coupled action switching modules (SCASM) generate robust, adaptive stepping in legged robots. In: Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006), BrusselsGoogle Scholar
  65. Linder CR (2005) Embodiment in two dimensions. In: Proceedings of the 7th international conference on climbing and walking robots, 2004Google Scholar
  66. Ludwar BC, Göritz ML, Schmidt J (2005) Intersegmental coordination of walking movements in stick insects. J Neurophysiol 93: 1255–1265PubMedCrossRefGoogle Scholar
  67. Manoonpong P, Pasemann F, Wörgötter F (2008) Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot Auton Syst 56(3): 265–288CrossRefGoogle Scholar
  68. Maufroy C, Kimura H, Takase K (2008) Towards a general neural controller for quadrupedal locomotion. Neural Netw 21: 667–681PubMedCrossRefGoogle Scholar
  69. Negrello M, Hülse M, Pasemann F (2008) Adaptive neurodynamics. In: Yang A, Shan Y (eds) Applications of complex adaptive systems. Idea Group, Hershey, pp 85–111Google Scholar
  70. Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT Press, CambridgeGoogle Scholar
  71. Orlovsky G, Deliagina T, Grillner S (1999) Neuronal control of locomotion. Oxford University Press, OxfordGoogle Scholar
  72. Pasemann F (1995) Characterization of periodic attractors in neural ring networks. Neural Netw 8: 421–429CrossRefGoogle Scholar
  73. Pasemann F, Steinmetz U, Hülse M, Lara B (2001) Robot control and the evolution of modular neurodynamics. Theory Biosci 120: 311–326Google Scholar
  74. Pearson K, Iles J (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58: 725–744Google Scholar
  75. Pearson K, Ekeberg O, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29(11): 625–631PubMedCrossRefGoogle Scholar
  76. Pfeifer R, Bongard J (2006) How the body shapes the way we think—a new view of intelligence. MIT Press, CambridgeGoogle Scholar
  77. Revzen S, Koditschek DE, Full RJ (2009) Towards testable neuromechanical control architectures for running. In: Sternad D (ed) Progress in motor control—a multidisciplinary perspective, Advances In Experimental Medicine And Biology, vol 629. Springer, Berlin, pp 25–56Google Scholar
  78. Ritzmann RE, Büschges A (2007) Insect walking: from reduced preparations to natural terrain. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 229–250Google Scholar
  79. Rutter BL, Lewinger WA, Blümel M, Büschges A, Quinn RD (2007) Simple muscle models regularize motion in a robotic leg with neurally-based step generation. In: 2007 IEEE international conference on robotics and automation, Roma, pp 630–635Google Scholar
  80. Schilling M, Cruse H, Arena P (2007) Hexapod walking: an expansion to walknet dealing with leg amputations and force oscillations. Biol Cybern 96(3): 323–340PubMedCrossRefGoogle Scholar
  81. Schumm M, Cruse H (2006) Control of swing movement: influences of differently shaped substrate. J Comp Physiol A 192(10): 1147–1164CrossRefGoogle Scholar
  82. Smith R (2009) Open dynamics engine., last visited: 18/11/2009
  83. von Twickel A, Pasemann F (2007) Reflex-oscillations in evolved single leg neurocontrollers for walking machines. Nat Comput 6(3): 311–337CrossRefGoogle Scholar
  84. von Uckermann G, Büschges A (2009) Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg. J Neurophysiol 102: 1956–1975CrossRefGoogle Scholar
  85. Webb B (2009) Animals versus animats: or why not model the real iguana. Adapt Behav 17(4): 269–286CrossRefGoogle Scholar
  86. Wendler G (1964) Laufen und stehen der stabheuschrecke carausius morosus: sinnesborstenfelder in den beingelenken als glieder von regelkreisen. Z vgl Physiol 48: 198–250CrossRefGoogle Scholar
  87. Wolf H, Büschges A (1995) Nonspiking local interneurons in insect leg motor control. ii. role of nonspiking local interneurons in the control of leg swing during walking. J Neurophysiol 73: 1861–1875PubMedGoogle Scholar
  88. Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90(2): 146–155PubMedCrossRefGoogle Scholar
  89. Yakovenko S, McCrea D, Stecina K, Prochazka A (2005) Control of locomotor cycle durations. J Neurophysiol 94: 1057–1065PubMedCrossRefGoogle Scholar
  90. Zahedi K, von Twickel A, Pasemann F (2008) Yars: a physical 3d simulator for evolving controllers for real robots. In: Carpin S, et al (eds) Simulation, modeling and programming for autonomous robots (SIMPAR 2008), LNAI, vol 5325. Springer, pp 75–86Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Arndt von Twickel
    • 1
    • 2
    Email author
  • Ansgar Büschges
    • 3
  • Frank Pasemann
    • 1
    • 2
  1. 1.Department of Neurocybernetics, Institute of Cognitive ScienceUniversity of OsnabrückOsnabrückGermany
  2. 2.Institute for Advanced StudyBerlinGermany
  3. 3.Department of Animal Physiology, Zoological InstituteUniversity of CologneCologneGermany

Personalised recommendations