Advertisement

Biological Cybernetics

, Volume 103, Issue 3, pp 237–253 | Cite as

What do the basal ganglia do? A modeling perspective

  • V. S. Chakravarthy
  • Denny Joseph
  • Raju S. Bapi
Review

Abstract

Basal ganglia (BG) constitute a network of seven deep brain nuclei involved in a variety of crucial brain functions including: action selection, action gating, reward based learning, motor preparation, timing, etc. In spite of the immense amount of data available today, researchers continue to wonder how a single deep brain circuit performs such a bewildering range of functions. Computational models of BG have focused on individual functions and fail to give an integrative picture of BG function. A major breakthrough in our understanding of BG function is perhaps the insight that activities of mesencephalic dopaminergic cells represent some form of ‘reward’ to the organism. This insight enabled application of tools from ‘reinforcement learning,’ a branch of machine learning, in the study of BG function. Nevertheless, in spite of these bright spots, we are far from the goal of arriving at a comprehensive understanding of these ‘mysterious nuclei.’ A comprehensive knowledge of BG function has the potential to radically alter treatment and management of a variety of BG-related neurological disorders (Parkinson’s disease, Huntington’s chorea, etc.) and neuropsychiatric disorders (schizophrenia, obsessive compulsive disorder, etc.) also. In this article, we review the existing modeling literature on BG and hypothesize an integrative picture of the function of these nuclei.

Keywords

Basal ganglia Dopamine Reinforcement learning Actor critic models Action selection Exploration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa H, Tanji J (1994) Corticocortical and thalamocortical responses of neurons in the monkey primary motor cortex and their relation to a trained motor task. J Neurophysiol 71: 550–560PubMedGoogle Scholar
  2. Alexander GE (1987) Selective neuronal discharge in monkey Putamen reflects intended direction of planned limb movements. Exp Brain Res 67: 623–634PubMedCrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res 85: 119–146PubMedCrossRefGoogle Scholar
  4. Arbib MA, Erdi P, Szentagothai J (1998) Neural organization: structure, function and dynamics. MIT Press, Cambridge, p 203Google Scholar
  5. Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14: 4467–4480PubMedGoogle Scholar
  6. Bapi RS, Doya K (1998) A sequence learning architecture based on cortico-basal ganglionic loops and reinforcement learning. In: ICONIP’98, Kita-Kyushu, Japan, 21–26 Oct 1998Google Scholar
  7. Bapi RS, Miyapuram KP, Graydon FX, Doya K (2006) fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences. Neuroimage 32(2): 714–727PubMedCrossRefGoogle Scholar
  8. Barto AG (1995) Adaptive critics and the basal ganglia. In: Houk JC, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 215–232Google Scholar
  9. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol 72: 507–520PubMedGoogle Scholar
  10. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21: 32–38PubMedCrossRefGoogle Scholar
  11. Berns GS, Sejnowski TJ (1995) A computational model of local memory in the primate pallidal-subthalamic circuit. Soc Neurosci Abstr 21: 678Google Scholar
  12. Berns GS, Sejnowski TJ (1998) A computational model of how the Basal ganglia produce sequences. J Cognit Neurosci 10: 108–121CrossRefGoogle Scholar
  13. Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117: 859–876PubMedCrossRefGoogle Scholar
  14. Brown PAO, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinsons disease. J Neurosci 21: 1033–1038PubMedGoogle Scholar
  15. Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6: 755–756PubMedCrossRefGoogle Scholar
  16. Chaudhuri A, Behan PO (2000a) Fatigue in neurological disorders. Lancet 179: 34–42Google Scholar
  17. Chaudhuri A, Behan P (2000b) Neurological dysfunction in chronic fatigue syndrome. J Chron Fatigue Syndr 6: 51–68CrossRefGoogle Scholar
  18. Chaudhuri A, Behan P (2000c) Fatigue and basal ganglia. J Neurol Sci 179: 34–42PubMedCrossRefGoogle Scholar
  19. Chesselet M, Delfs JM (2003) Basal ganglia and movement disorders: an update. Trends Neurosci 19(10): 417–422Google Scholar
  20. Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26: 3697–3712PubMedCrossRefGoogle Scholar
  21. Clark D, Boutros N, Mendez M (2005) The brain and behavior. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Cohen JD, Braver TS, Brown JW (2002) Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 12: 223–229PubMedCrossRefGoogle Scholar
  23. Contreras-Vidal JL, Schultz W (1999) A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 6(3): 191–214PubMedCrossRefGoogle Scholar
  24. Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol Cybern 73(5): 467–476PubMedCrossRefGoogle Scholar
  25. Contreras-Vidal JL, Stelmach GE (1996) Effects of Parkinsonism on motor control. Life Sci 58: 165–176PubMedCrossRefGoogle Scholar
  26. Crammond DJ, Kalaska JF (1989) Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period. Exp Brain Res 76: 458–462PubMedCrossRefGoogle Scholar
  27. Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinsons-disease presence and predictability of temporal and spatial cues. Brain 118: 935–950PubMedCrossRefGoogle Scholar
  28. Czernecki V, Pillon B, Houeto JL, Pochon JB, Levy R, Dubois B (2002) Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia 40: 2257–2267PubMedCrossRefGoogle Scholar
  29. Daw ND (2003) Reinforcement Learning models of the dopamine system and their behavioral implications. Ph.D. thesis. Carnegie Mellon University, PittsburghGoogle Scholar
  30. Daw ND, Touretzky DS (2000) Behavior results suggest an average reward TD model of dopamine function. Neurocomputing 32: 679–684CrossRefGoogle Scholar
  31. Daw ND, O’doherty JP, Seymour B, Dayan P, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441: 876–879PubMedCrossRefGoogle Scholar
  32. Dean WH, Davis GD (1958) Behavior changes following caudate lesions in rhesus monkeys. J Neurophysiol 22: 165–187Google Scholar
  33. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1): 227–241PubMedCrossRefGoogle Scholar
  34. Dorigo M, Colombetti M (1994) Robot shaping: developing autonomous agents through learning. Artif Intell 71(2): 321–370CrossRefGoogle Scholar
  35. Doya K (2002) Metalearning and neuromodulation. Neural Netw 15(4): 495–506PubMedCrossRefGoogle Scholar
  36. Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the corticostriatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3): 252–262PubMedCrossRefGoogle Scholar
  37. Engelborghs S, Marien P, Pickut BA, Verstraeten S, De Deyn PP (2000) Loss of psychic self-activation after paramedian bithalamic infarction. Stroke 31: 1762–1765PubMedGoogle Scholar
  38. Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35: 1731–1741PubMedGoogle Scholar
  39. Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614): 1898–1902PubMedCrossRefGoogle Scholar
  40. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cognit Neurosci 17: 51–72CrossRefGoogle Scholar
  41. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121: 953–959PubMedGoogle Scholar
  42. Fuster JM (1997) The prefrontal cortex. Raven Press, New YorkGoogle Scholar
  43. Gabrieli JDE, Poldrack RA, Desmond JE (1995) The role of left prefrontal cortex in language and memory. Adv Neurol 66: 21–34Google Scholar
  44. Gangadhar G, Joseph D, Chakravarthy VS (2007) An oscillatory neuromotor model of handwriting generation. Int J Doc Anal Recognit 10(2): 69–84CrossRefGoogle Scholar
  45. Gangadhar G, Joseph D, Chakravarthy VS (2008) Understanding Parkinsonian Handwriting using a computational model of basal ganglia. Neural Comput 20: 1–35CrossRefGoogle Scholar
  46. Georgiou N, Iansek R, Bradshaw JL, Phillips JG, Mattingley JB (1993) An evaluation of the role of internal cues in the pathogenesis of Parkinsonian hypokinesia. Brain 116: 1575–1587PubMedCrossRefGoogle Scholar
  47. Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245: 1209–1210PubMedCrossRefGoogle Scholar
  48. Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 371–468Google Scholar
  49. Ghika-Schmid F, Bogousslavsky J (2000) The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol 48: 220–227PubMedCrossRefGoogle Scholar
  50. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, Fahn S (1992) Motor blocks in Parkinson’s disease. Neurology 42: 333–339PubMedGoogle Scholar
  51. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F, Mountcastle U (eds) Handbook of physiology. The American Physiological Society, Washington, pp 373–417Google Scholar
  52. Heise C, Kayalioglu G (2008) Cytoarchitecture of the spinal cord. In: Watson C, Paxinos G, Kayaliyoglu G (eds) The spinal cord. Elsevier, LondonGoogle Scholar
  53. Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22: 464–471PubMedCrossRefGoogle Scholar
  54. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953–978PubMedGoogle Scholar
  55. Hollerbach JM (1981) An oscillation theory of handwriting. Biol Cybern 39: 139–156CrossRefGoogle Scholar
  56. Houk JC, Davis JL, Beiser DG (1995) Models of information processing in the basal ganglia. MIT Press, CambridgeGoogle Scholar
  57. Hurtado JM, Graym CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus Pallidus: a single case study. Neurobiology 96: 1674–1679Google Scholar
  58. Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28(28): 7209–7218PubMedCrossRefGoogle Scholar
  59. Iversen SD (1979) Behaviour after neostriatal lesions in animals. In: Divac I, Oberg RGB (eds) The neostriatum. Pergamon, Oxford, pp 195–210Google Scholar
  60. Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15: 535–547PubMedCrossRefGoogle Scholar
  61. Kakade S, Dayan P (2002) Dopamine: generalization and Bonuses. Neural Netw 14(4): 549–559CrossRefGoogle Scholar
  62. Keath JR, Iacoviello MP, Barrett LE, Mansvelder HD, McGehee DS (2007) Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J Neurophysiol 98: 3388–3396PubMedCrossRefGoogle Scholar
  63. Knight RT, Grabowecky MF, Scabini D (1995) Role of human prefrontal cortex in attention control. Adv Neurol 66: 21–36PubMedGoogle Scholar
  64. Kornhuber HH, Deecke L (1990) Readiness for movement—the Bereitschafts potential-story. Curr Contents Life Sci 33(22)Google Scholar
  65. Kubota K, Hamada I (1978) Visual tracking and neuron activity in the post-arcuate area in monkeys. J Physiol (Paris) 74: 297–312Google Scholar
  66. Kubota K, Funahashi S (1982) Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking. J Neurophysiol 47: 362–376PubMedGoogle Scholar
  67. Lang W, Cheyne D, Kristeva R, Beisteiner R, Lindinger G, Deecke L (1991) Three-dimensional localization of SMA activity preceding voluntary movement. Exp Brain Res 87: 688–695PubMedCrossRefGoogle Scholar
  68. Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26: 3567–3583PubMedCrossRefGoogle Scholar
  69. Levy R, Dubois B (2005) Apathy and the functional anatomy of the prefrontal cortex—basal ganglia circuits. Cereb Cortex 16: 916–928PubMedCrossRefGoogle Scholar
  70. Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96: 549–564PubMedCrossRefGoogle Scholar
  71. Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cognit Neurosci 10: 316–331CrossRefGoogle Scholar
  72. Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32(5): 514–539PubMedGoogle Scholar
  73. Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognit Brain Res 21: 139–170CrossRefGoogle Scholar
  74. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381–425PubMedCrossRefGoogle Scholar
  75. Mohamed M, Chakravarthy VS, Subramanian D, Ravindran B (2009) The role of basal ganglia in performing simple reaching movements: a computational model. In: Proceedings of 14th conference of the international graphonomics society, Dijon, France, 13–16 SeptemberGoogle Scholar
  76. Montague PR, Berns G (2002) Neural economics and the biological substrates of valuation. Neuron 36: 265–284PubMedCrossRefGoogle Scholar
  77. Montague PR, Dayan P, Person C, Sejnowski TJ (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377: 725–728PubMedCrossRefGoogle Scholar
  78. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: 1936–1947PubMedGoogle Scholar
  79. Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioral control. Nature 431: 760–767PubMedCrossRefGoogle Scholar
  80. Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus Pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol 74: 1800–1805PubMedGoogle Scholar
  81. Obeso JA, Rodriguez-Oroz MC, Blesa FJ, Guridi J (2006) The globus pallidus pars externa and Parkinson’s disease. Ready for prime time?. Exp Neurol 202: 1–7PubMedCrossRefGoogle Scholar
  82. Oorschot DE, Tunstall MJ, Wickens JR (2002) Local connectivity between striatal spiny projection neurons: a re-evaluation. In: Nicholson L, Faull R (eds) Basal ganglia VII. Plenum Press, New YorkGoogle Scholar
  83. O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the frontal cortex and basal ganglia. Neural Comput 18: 283–328PubMedCrossRefGoogle Scholar
  84. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25: 563–593PubMedCrossRefGoogle Scholar
  85. Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Memory 65: 65–72CrossRefGoogle Scholar
  86. Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. J Neurosci 9: 1465–1472PubMedGoogle Scholar
  87. Plenz D, Kitai ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus Pallidus. Nature 400: 677–682PubMedCrossRefGoogle Scholar
  88. Prescott TJ, Gurney K, Montes-Gonzalez F, Humphries M, Redgrave P (2002) The robot basal ganglia: action selection by an embedded model of the basal ganglia. In: Nicholson L, Faull R (eds) Basal ganglia VII. Plenum Press, New York, pp 349–356Google Scholar
  89. Raz A, Vaadia E, Bergman H (2000) Firing patterns of spontaneous discharge of Pallidal neurons in the model of Parkinsonism. J Neurosci 20: 8559–8571PubMedGoogle Scholar
  90. Redgrave P, Prescott TJ, Gurney K (1999a) Is the short-latency dopamine response too short to signal reward error. Trends Neurosci 22: 146–151PubMedCrossRefGoogle Scholar
  91. Redgrave P, Prescott TJ, Gurney K (1999b) The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 89: 1009–1023PubMedCrossRefGoogle Scholar
  92. Russell VA, Allim R, Lamm MC, Taljaard JJ (1992) Regional distribution of monoamines and dopamine D1- and D2-receptors in the striatum of the rat. Neurochem Res 17: 387–395PubMedCrossRefGoogle Scholar
  93. Sacco P, Hope PAJ, Thickbroom GW, Byrnes ML, Mastaglia FL (1999) Corticomotor excitability and perception of effort during sustained exercise in the chronic fatigue syndrome. Clin Neurophysiol 110: 1883–1891PubMedCrossRefGoogle Scholar
  94. Scheiner R, Pluckhahn S, Oney B, Blenau W, Erber J (2002) Behavioral pharmacology of octopamine, tyramine, and dopamine in honey bees. Neurology 42: 333Google Scholar
  95. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27PubMedGoogle Scholar
  96. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599PubMedCrossRefGoogle Scholar
  97. Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio and behavior. Science 249: 892–895PubMedCrossRefGoogle Scholar
  98. Smith Y (2008) The thalamus. In: Michael Conn P (eds) Neuroscience in medicine. Humana Press, New YorkGoogle Scholar
  99. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353–387PubMedCrossRefGoogle Scholar
  100. Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93: 13515–13522PubMedCrossRefGoogle Scholar
  101. Sridharan D, Prashanth PS, Chakravarthy VS (2006) The role of the basal ganglia in exploration in a neural model based on reinforcement learning. Int J Neural Syst 16: 111–124PubMedCrossRefGoogle Scholar
  102. Starr A, Scalise A, Gordon R, Michalewski HJ, Caramia MD (2000) Motor cortex excitability in chronic fatigue syndrome. Clin Neurophysiol 111: 2025–2031PubMedCrossRefGoogle Scholar
  103. Stout JC, Johnson SA (2005) Cognitive impairment and dementia in basal ganglia disorders. Curr Neurol Neurosci Rep 5: 355–363PubMedCrossRefGoogle Scholar
  104. Stuss DT, Van Reekum R, Murphy KJ (2000) Differentiation of states and causes of apathy. In: Borod JC (eds) The Neuropsychology of emotion. Oxford University Press, Oxford, pp 340–363Google Scholar
  105. Suri RE, Schultz W (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91: 871–890PubMedCrossRefGoogle Scholar
  106. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  107. Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian reinforcement. In: Gabriel M, Moore J (eds) Learning and computational neuroscience. MIT Press, CambridgeGoogle Scholar
  108. Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268PubMedCrossRefGoogle Scholar
  109. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22: 2963–2976PubMedGoogle Scholar
  110. Thut G, Schultz W, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, Leenders KL (1997) Activation of the human brain by monetary reward. Neuroreport 8: 1225–1228PubMedCrossRefGoogle Scholar
  111. Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–708PubMedCrossRefGoogle Scholar
  112. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 22: 549–554CrossRefGoogle Scholar
  113. Wickens J (1997) Basal ganglia: structure and computations. Netw Comput Neural Syst 8(4): R77–R109CrossRefGoogle Scholar
  114. Wise PM (1982) Norepinephrine and dopamine activity in microdissected brain areas of the middle-aged and young rat on Proestrus. Biol Reprod 27: 562–574PubMedCrossRefGoogle Scholar
  115. Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17: 245–319PubMedCrossRefGoogle Scholar
  116. Yin HH, Knowlton BJ (2006) The role of basal ganglia in habit formation. Nat Neurosci Rev 7: 464–476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. S. Chakravarthy
    • 1
  • Denny Joseph
    • 1
  • Raju S. Bapi
    • 2
  1. 1.Department of BiotechnologyIndian Institute of Technology, MadrasChennaiIndia
  2. 2.Department of Computer and Information Sciences and Center for Cognitive SciencesUnviersity of HyderabadHyderabadIndia

Personalised recommendations