Biological Cybernetics

, Volume 102, Issue 1, pp 57–69 | Cite as

Evaluating the effective connectivity of resting state networks using conditional Granger causality

  • Wei Liao
  • Dante Mantini
  • Zhiqiang Zhang
  • Zhengyong Pan
  • Jurong Ding
  • Qiyong Gong
  • Yihong Yang
  • Huafu Chen
Original Paper


The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within those RSNs, we applied a conditional Granger causality analysis (CGCA) to the RSNs retrieved by independent component analysis (ICA) from resting state functional magnetic resonance imaging (fMRI) data. Our analysis provided evidence for specific causal influences among the detected RSNs: default-mode, dorsal attention, core, central-executive, self-referential, somatosensory, visual, and auditory networks. In particular, we identified that self-referential and default-mode networks (DMNs) play distinct and crucial roles in the human brain functional architecture. Specifically, the former RSN exerted the strongest causal influence over the other RSNs, revealing a top-down modulation of self-referential mental activity (SRN) over sensory and cognitive processing. In quite contrast, the latter RSN was profoundly affected by the other RSNs, which may underlie an integration of information from primary function and higher level cognition networks, consistent with previous task-related studies. Overall, our results revealed the causal influences among these RSNs at different processing levels, and supplied information for a deeper understanding of the brain network dynamics.


Resting state networks Effective connectivity Independent component analysis Conditional Granger causality analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2009_350_MOESM1_ESM.doc (486 kb)
ESM 1 (DOC 486 kb)


  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72CrossRefPubMedGoogle Scholar
  2. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7: 268–277CrossRefPubMedGoogle Scholar
  3. Bartels A, Zeki S (2005) Brain dynamics during natural viewing conditions—a new guide for mapping connectivity in vivo. Neuroimage 24: 339–349CrossRefPubMedGoogle Scholar
  4. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360: 1001–1013CrossRefGoogle Scholar
  5. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537–541CrossRefPubMedGoogle Scholar
  6. Biswal BB, Van Kylen J, Hyde JS (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed 10: 165–170CrossRefPubMedGoogle Scholar
  7. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101: 9849–9854CrossRefPubMedGoogle Scholar
  8. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11: 49–57CrossRefPubMedGoogle Scholar
  9. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124: 1–38CrossRefPubMedGoogle Scholar
  10. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14: 140–151CrossRefPubMedGoogle Scholar
  11. Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150: 228–237CrossRefPubMedGoogle Scholar
  12. Chen S, Ross TJ, Zhan W, Myers CS, Chuang KS, Heishman SJ, Stein EA, Yang Y (2008) Group independent component analysis reveals consistent resting-state networks across multiple sessions. Brain Res 1239: 141–151CrossRefPubMedGoogle Scholar
  13. Chen H, Yang Q, Liao W, Gong Q, Shen S (2009) Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping. Neuroimage 47: 1844–1853CrossRefPubMedGoogle Scholar
  14. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215CrossRefPubMedGoogle Scholar
  15. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21: 1636–1644PubMedGoogle Scholar
  16. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22: 1326–1333PubMedGoogle Scholar
  17. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103: 13848–13853CrossRefPubMedGoogle Scholar
  18. D’Argembeau A, Collette F, Vander Linden M, Laureys S, Del Fiore G, Degueldre C, Luxen A, Salmon E (2005) Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25: 616–624CrossRefPubMedGoogle Scholar
  19. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359–1367CrossRefPubMedGoogle Scholar
  20. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50: 799–812CrossRefPubMedGoogle Scholar
  21. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104: 11073–11078CrossRefPubMedGoogle Scholar
  22. Eckert MA, Kamdar NV, Chang CE, Beckmann CF, Greicius MD, Menon V (2008) A cross-modal system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity analysis. Hum Brain Mapp 29: 848–857CrossRefPubMedGoogle Scholar
  23. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673–9678CrossRefPubMedGoogle Scholar
  24. Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9: 23–25CrossRefPubMedGoogle Scholar
  25. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101: 3270–3283CrossRefPubMedGoogle Scholar
  26. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15–29CrossRefPubMedGoogle Scholar
  27. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2: 56–78CrossRefGoogle Scholar
  28. Friston K (2009a) Dynamic causal modeling and Granger causality Comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroimageGoogle Scholar
  29. Friston KJ (2009b) Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol 7: e33CrossRefPubMedGoogle Scholar
  30. Friston KJ, Frith CD, Frackowiak RSJ (1993) Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 1: 69–80CrossRefGoogle Scholar
  31. Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS (1996) Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex 6: 156–164CrossRefPubMedGoogle Scholar
  32. Gao Q, Chen H, Gong Q (2008) Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality. Neurosci Lett 443: 1–6CrossRefPubMedGoogle Scholar
  33. Geweke JF (1984) Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc 79: 709–715CrossRefGoogle Scholar
  34. Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21: 1251–1261CrossRefPubMedGoogle Scholar
  35. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37: 424–438CrossRefGoogle Scholar
  36. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258CrossRefPubMedGoogle Scholar
  37. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637–4642CrossRefPubMedGoogle Scholar
  38. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694CrossRefPubMedGoogle Scholar
  39. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259–4264CrossRefPubMedGoogle Scholar
  40. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15: 247–262CrossRefPubMedGoogle Scholar
  41. Harrison L, Penny WD, Friston K (2003) Multivariate autoregressive modeling of fMRI time series. Neuroimage 19: 1477–1491CrossRefPubMedGoogle Scholar
  42. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10: 626–634CrossRefPubMedGoogle Scholar
  43. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39: 1666–1681CrossRefPubMedGoogle Scholar
  44. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39: 527–537CrossRefPubMedGoogle Scholar
  45. Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Sci 11: 229–235CrossRefPubMedGoogle Scholar
  46. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679CrossRefPubMedGoogle Scholar
  47. Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28: 1251–1266CrossRefPubMedGoogle Scholar
  48. Liao W, Marinazzo D, Pan Z, Gong Q, Chen H (2009) Kernel Granger causality mapping effective connectivity on fMRI data. IEEE Trans Med Imaging 28: 1825–1835CrossRefPubMedGoogle Scholar
  49. Londei A, D’Ausilio A, Basso D, Sestieri C, Del Gratta C, Romani GL, Olivetti Belardinelli M (2007) Brain network for passive word listening as evaluated with ICA and Granger causality. Brain Res Bull 72: 284–292CrossRefPubMedGoogle Scholar
  50. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7: 119–132CrossRefPubMedGoogle Scholar
  51. Macrae CN, Moran JM, Heatherton TF, Banfield JF, Kelley WM (2004) Medial prefrontal activity predicts memory for self. Cereb Cortex 14: 647–654CrossRefPubMedGoogle Scholar
  52. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104: 13170–13175CrossRefPubMedGoogle Scholar
  53. Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C (2009) Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage 44: 265–274CrossRefPubMedGoogle Scholar
  54. McKeown MJ, Jung TP, Makeig S, Brown G, Kindermann SS, Lee TW, Sejnowski TJ (1998) Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc Natl Acad Sci USA 95: 803–810CrossRefPubMedGoogle Scholar
  55. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394–408CrossRefPubMedGoogle Scholar
  56. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44: 893–905CrossRefPubMedGoogle Scholar
  57. Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cogn Sci 8: 102–107CrossRefPubMedGoogle Scholar
  58. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31: 440–457CrossRefPubMedGoogle Scholar
  59. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206–219CrossRefPubMedGoogle Scholar
  60. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98: 676–682CrossRefPubMedGoogle Scholar
  61. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230–242CrossRefPubMedGoogle Scholar
  62. Roebroeck A, Formisano E, Goebel R (2009) The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroimageGoogle Scholar
  63. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15: 1332–1342CrossRefPubMedGoogle Scholar
  64. Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297: 1706–1708CrossRefPubMedGoogle Scholar
  65. Seth AK (2005) Causal connectivity of evolved neural networks during behavior. Network 16: 35–54CrossRefPubMedGoogle Scholar
  66. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105: 12569–12574CrossRefPubMedGoogle Scholar
  67. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1: 3CrossRefPubMedGoogle Scholar
  68. Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 28: 13754–13764CrossRefPubMedGoogle Scholar
  69. Stevens MC, Kiehl KA, Pearlson G, Calhoun VD (2007) Functional neural circuits for mental timekeeping. Hum Brain Mapp 28: 394–408CrossRefPubMedGoogle Scholar
  70. Stevens MC, Pearlson GD, Calhoun VD (2009) Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp 30: 2356–2366CrossRefPubMedGoogle Scholar
  71. Tian L, Jiang T, Liang M, Li X, He Y, Wang K, Cao B, Jiang T (2007) Stabilities of negative correlations between blood oxygen level-dependent signals associated with sensory and motor cortices. Hum Brain Mapp 28: 681–690CrossRefPubMedGoogle Scholar
  72. Uddin LQ, Clare Kelly AM, Biswal BB, Xavier Castellanos F, Milham MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625–637CrossRefPubMedGoogle Scholar
  73. Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim DS, Tager-Flusberg H (2008) Effective and structural connectivity in the human auditory cortex. J Neurosci 28: 3341–3349CrossRefPubMedGoogle Scholar
  74. van de Ven V, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22: 165–178CrossRefPubMedGoogle Scholar
  75. van de Ven V, Bledowski C, Prvulovic D, Goebel R, Formisano E, Di Salle F, Linden DE, Esposito F (2008) Visual target modulation of functional connectivity networks revealed by self-organizing group ICA. Hum Brain Mapp 29: 1450–1461CrossRefPubMedGoogle Scholar
  76. van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state FMRI data. PLoS ONE 3: e2001CrossRefPubMedGoogle Scholar
  77. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96: 3517–3531CrossRefPubMedGoogle Scholar
  78. Wilke M, Lidzba K, Krageloh-Mann I (2009) Combined functional and causal connectivity analyses of language networks in children: a feasibility study. Brain Lang 108: 22–29CrossRefPubMedGoogle Scholar
  79. Wu CW, Gu H, Lu H, Stein EA, Chen JH, Yang Y (2008) Frequency specificity of functional connectivity in brain networks. Neuroimage 42: 1047–1055CrossRefPubMedGoogle Scholar
  80. Zhou Z, Chen Y, Ding M, Wright P, Lu Z, Liu Y (2009) Analyzing brain networks with PCA and conditional Granger causality. Hum Brain Mapp 30: 2197–2206CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Wei Liao
    • 1
  • Dante Mantini
    • 2
    • 3
    • 4
  • Zhiqiang Zhang
    • 5
  • Zhengyong Pan
    • 1
  • Jurong Ding
    • 1
  • Qiyong Gong
    • 6
  • Yihong Yang
    • 7
  • Huafu Chen
    • 1
  1. 1.Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Institute for Advanced Biomedical TechnologiesG. D’Annunzio University FoundationChietiItaly
  3. 3.Department of Clinical Sciences and Bio-imagingG. D’Annunzio UniversityChietiItaly
  4. 4.Laboratory for Neuro-PsychophysiologyK.U. Leuven Medical SchoolLeuvenBelgium
  5. 5.Department of Medical Imaging, Nanjing Jinling Hospital, Clinical School, Medical CollegeNanjing UniversityNanjingPeople’s Republic of China
  6. 6.Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan University, West China School of MedicineChengduPeople’s Republic of China
  7. 7.Neuroimaging Research BranchNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUSA

Personalised recommendations