Biological Cybernetics

, 101:307 | Cite as

Modelling place memory in crickets

  • Michael ManganEmail author
  • Barbara Webb
Original Paper


Insects can remember and return to a place of interest using the surrounding visual cues. In previous experiments, we showed that crickets could home to an invisible cool spot in a hot environment. They did so most effectively with a natural scene surround, though they were also able to home with distinct landmarks or blank walls. Homing was not successful, however, when visual cues were removed through a dark control. Here, we compare six different models of visual homing using the same visual environments. Only models deemed biologically plausible for use by insects were implemented. The average landmark vector model and first order differential optic flow are unable to home better than chance in at least one of the visual environments. Second order differential optic flow and GradDescent on image differences can home better than chance in all visual environments, and best in the natural scene environment, but do not quantitatively match the distributions of the cricket data. Two models—centre of mass average landmark vector and RunDown on image differences—could produce the same pattern of results as observed for crickets. Both the models performed best using simple binary images and were robust to changes in resolution and image smoothing.


Insect learning Visual navigation Place memory Cricket Homing models 


  1. Binding D, Labrosse F (2006) Visual local navigation using warped panoramic images. In: Proceedings of Towards Autonomous Robotic Systems, University of Surrey, Guildford, pp 19–26Google Scholar
  2. Cartwright B, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151: 521–543. doi: 10.1007/BF00605469 CrossRefGoogle Scholar
  3. Cheung A, Stürzl W, Zeil J, Cheng K (2008) The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. J Exp Psychol Anim Behav Process 34(1): 15–30. doi: 10.1037/0097-7403.34.1.15 CrossRefPubMedGoogle Scholar
  4. Collett T, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3(7): 542–552. doi: 10.1038/nrn872 CrossRefPubMedGoogle Scholar
  5. Franz M, Schölkopf B, Mallot H, Bnlthoff H (1998) Where did I take that snapshot? Scene-based homing by image matching. Biol Cybern 79: 191–202CrossRefGoogle Scholar
  6. Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204: 2063–2072PubMedGoogle Scholar
  7. Graham P, Cheng K (2009) Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? J Comp Physiol A 195(7): 681–689. doi: 10.1007/s00359-009-0443-6 CrossRefGoogle Scholar
  8. Hafner V (2001) Adaptive homing—robotic exploration tours. Adapt Behav 9: 131–141. doi: 10.1177/10597123010093002 CrossRefGoogle Scholar
  9. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155(3): 289–296. doi: 10.1007/BF00610582 CrossRefGoogle Scholar
  10. Labhart T, Petzold J, Helbling H (2001) Spatial integration of polarization-sensitive interneurons of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204: 2423–2430PubMedGoogle Scholar
  11. Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Rob Auton Syst 30: 39–64. doi: 10.1016/S0921-8890(99)00064-0 CrossRefGoogle Scholar
  12. Land M (1997) Visual acuity in insects. Annu Rev Entomol 42: 147–177. doi: 10.1146/annurev.ento.42.1.147 CrossRefPubMedGoogle Scholar
  13. Mizunami M, Weibrecht JM, Strausfeld NJ (1998) Mushroom bodies of the cockroach: their participation in place memory. J Comp Neurol 402(4): 520–537. doi: 10.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K CrossRefPubMedGoogle Scholar
  14. Möller R, Vardy A (2006) Local visual homing matched-filter descent in image distances. Biol Cybern 95: 413–430. doi: 10.1007/s00422-006-0095-3 CrossRefPubMedGoogle Scholar
  15. Möller R, Lambrinos D, Roggendorf T, Pfeifer R, Wehner R (2001) Insect strategies of visual homing in mobile robots. Biorobotics—methods and applications. AAAI Press, Cambridge, chap 3, pp 37–66Google Scholar
  16. Möller R, Vardy A, Kreft S, Ruwisch S (2007) Visual homing in environments with anisotropic landmark distribution. Auton Rob 23(1): 231–245. doi: 10.1007/s10514-007-9043-x CrossRefGoogle Scholar
  17. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868): 681–683. doi: 10.1038/297681a0 CrossRefPubMedGoogle Scholar
  18. Stürzl W, Cheung A, Cheng K, Zeil J (2008) The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas. J Exp Psychol Anim Behav Process 34(1): 1–14. doi: 10.1037/0097-7403.34.1.1 CrossRefPubMedGoogle Scholar
  19. Vardy A (2005) Biologically plausible methods for robot visual homing. PhD thesis, Ottawa-Carleton Institute for Computer ScienceGoogle Scholar
  20. Vardy A, Möller R (2005) Biologically plausible visual homing methods based on optical flow techniques. Connect Sci Special Issue Navig 17: 47–90. doi: 10.1080/09540090500140958 Google Scholar
  21. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189(8): 579–588. doi: 10.1007/s00359-003-0431-1 CrossRefGoogle Scholar
  22. Wessnitzer J, Mangan M, Webb B (2008) Place memory in crickets. Proc R Soc B 275: 915–921. doi: 10.1098/rspb.2007.1647 CrossRefPubMedGoogle Scholar
  23. Wystrach A, Beugnon G (2009) Ants learn geometry and features. Curr Biol 19: 61–66. doi: 10.1016/j.cub.2008.11.054 CrossRefPubMedGoogle Scholar
  24. Zampoglou M, Szenher M, Webb B (2006) Adaptation of controllers for image-based homing. Adapt Behav 14(4): 381–399. doi: 10.1177/1059712306072338 CrossRefGoogle Scholar
  25. Zeil J, Hofmann M, Chahl J (2003) Catchment areas of panoramic snapshots in outdoor scenes. Opt Soc Am J 20: 450–469. doi: 10.1364/JOSAA.20.000450 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Informatics ForumEdinburghScotland, UK

Personalised recommendations