Biological Cybernetics

, Volume 101, Issue 3, pp 169–182 | Cite as

What can be learnt from analysing insect orientation flights using probabilistic SLAM?

  • Bartholomew BaddeleyEmail author
  • Andrew Philippides
  • Paul Graham
  • Natalie Hempel de Ibarra
  • Thomas Collett
  • Phillip Husbands
Original Paper


In this paper, we provide an analysis of orientation flights in bumblebees, employing a novel technique based on simultaneous localisation and mapping (SLAM) a probabilistic approach from autonomous robotics. We use SLAM to determine what bumblebees might learn about the locations of objects in the world through the arcing behaviours that are typical of these flights. Our results indicate that while the bees are clearly influenced by the presence of a conspicuous landmark, there is little evidence that they structure their flights to specifically learn about the position of the landmark.


Orientation flights SLAM Navigation Bumblebees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vergl Physiol 41: 1–25Google Scholar
  2. Capaldi EA, Smith AD, Osborne JL, Fahr-Bach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403: 537–540PubMedCrossRefGoogle Scholar
  3. Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: Bees weight landmarks according to their distance to the goal. J Comp Physiol A 161: 469–475CrossRefGoogle Scholar
  4. Cheng K, Shettleworth S, Huttenlocher J, Rieser J (2007) Bayesian integration of spatial information. Psychol Bull 133(4): 625–637PubMedCrossRefGoogle Scholar
  5. Collett T (1995) Making learning easy: the acquisition of visual information during the orientation flights of social wasps. J Comp Physiol A 177: 737–747Google Scholar
  6. Collett T, Lehrer M (1993) Looking and Learning: A Spatial Pattern in the Orientation Flight of the Wasp Vespula vulgaris. Proc R Soc 252(1334): 129–134CrossRefGoogle Scholar
  7. Collett T, Zeil J (1997) The selection and use of landmarks by insects. In: Lehrer M (eds) Orientation and communication in arthropods. Birkhauser, Basel, pp 41–65Google Scholar
  8. Courville A, Daw N, Touretzky D (2006) Bayesian theories of conditioning in a changing world. Trends Cognit Sci 10: 294–300CrossRefGoogle Scholar
  9. Cummins M, Newman P (2008) FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearances. Int J Robot Res 27(6): 647–665CrossRefGoogle Scholar
  10. Davison A, Murray D (2002) Simultaneous Localisation and Map-Building Using active Vision. IEEE Trans PAMI 24(7): 865–880Google Scholar
  11. Dissanayake M, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom 17(3): 229–241CrossRefGoogle Scholar
  12. Durrant-Whyte H, Bailey T (2006) Simultaneous localisation and mapping (SLAM): part i the essential algorithms. Robot Autom Mag 13: 99–110CrossRefGoogle Scholar
  13. Gallistel CR (1989) Animal cognition: The representation of space, time, and number. Annu Rev Psychol 40: 155–189PubMedCrossRefGoogle Scholar
  14. Gould JL (1986) The Locale Map of Honey Bees: Do Insects Have Cognitive Maps?. Science 232(4752): 861–863PubMedCrossRefGoogle Scholar
  15. Griffiths T, Kemp C, Tenenbaum J (2008) Bayesian models of cognition. The Cambridge handbook of computational cognitive modeling. Chap. 3. Cambridge University Press, LondonGoogle Scholar
  16. Guivant J, Nebot E (2001) Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans Robot Autom 17(3): 242–257CrossRefGoogle Scholar
  17. Jander R (1997) Macroevolution of a fixed action pattern for learning: the exploration flights of bees and wasps. In: Greenberg G, Tobach E (eds) Comparative psychology of invertebrates: the field and laboratory study of insect behavior. Garland, New York, pp 79–99Google Scholar
  18. Knill D, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12): 712–719PubMedCrossRefGoogle Scholar
  19. Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cognit Sci 10: 319–326CrossRefGoogle Scholar
  20. Land M (1999) Motion and vision: why animals move their eyes. J Comp Physiol 185: 341–352CrossRefGoogle Scholar
  21. Lee T, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A 20(7): 1434–1448CrossRefGoogle Scholar
  22. Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78: 274–276CrossRefGoogle Scholar
  23. Lehrer M (1993) Why do bees turn back and look?. J Comp Physiol A 172: 549–563CrossRefGoogle Scholar
  24. Lehrer M, Collett TS (1994) Approaching and departing bees learn different cues to the distance of a landmark. J Comp Physiol A 175: 171–177CrossRefGoogle Scholar
  25. Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. PNAS 102(8): 3040–3045PubMedCrossRefGoogle Scholar
  26. Milford M, Wyeth G (2008) Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Trans Robot 24(5): 1038–1053CrossRefGoogle Scholar
  27. Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fast-SLAM: A factored solution to the simultaneous localization and mapping problem. Proc AAAI Natl Conf Artif Intell 2002: 593–598Google Scholar
  28. Rao R (2004) Hierarchical Bayesian inference in networks of spiking neurons. Adv. neural information processing systems (NIPS 04), vol 17. MIT Press, CambridgeGoogle Scholar
  29. Seidl R, Kaiser W (1981) Visual field size, binocular domain and ommatidial array of the compound eyes of honey bees. J comp Physiol A 143: 17–26CrossRefGoogle Scholar
  30. Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In: Cox IJ, Wilfon GT (eds) Autonomous Robot Vehicles. Springer, Heidelberg, pp 167–193Google Scholar
  31. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. PNAS 98(7): 3898–3903PubMedCrossRefGoogle Scholar
  32. Srinivasan M, Zhang S, Bidwell N (1997) Visually mediated odometry in honeybees. J Exp Biol 200: 2513–2522PubMedGoogle Scholar
  33. Thrun S, Fox D, Burgard W (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Mach Learn 31(1): 29–53CrossRefGoogle Scholar
  34. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, CambridgeGoogle Scholar
  35. Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem ersten Orientierungsflug. Zool Jb allg Zool Physiol 79: 33–69Google Scholar
  36. van Iersel J, van den Assem J (1964) Aspects of orientation in the digger wasp Bembix rostrata. Anim Behav (Suppl I):145–162Google Scholar
  37. von Frisch K (1967) The dance language and orientation of bees. Belknap/Harvard University Press, CambridgeGoogle Scholar
  38. Voss R, Zeil J (1998) Active vision in insects: an analysis of object-directed zig-zag flights in a ground-nesting wasp (Odynerus spinipes, Eumenidae). J Comp Physiol A 182: 377–387CrossRefGoogle Scholar
  39. Wehner R (1981) Spatial vision in arthropods. Handbook of sensory physiology VII/6C. Springer, Heidelberg, pp 287–616Google Scholar
  40. Wehner R, Menzel R (1990) Do insects have cognitive maps?. Annu Rev Neurosci 13: 403–414PubMedGoogle Scholar
  41. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than mapsGoogle Scholar
  42. Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis?. Trends Cognit Sci 10: 301–308CrossRefGoogle Scholar
  43. Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). I Description of flight. J Comp Physiol A 172: 189–205CrossRefGoogle Scholar
  44. Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II Similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172: 207–222CrossRefGoogle Scholar
  45. Zeil J, Kelber A (1991) Orientation flights in ground nesting wasps and bees share a common organization. Verh Dtsch Zool Ges 84: 371–372Google Scholar
  46. Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199: 245–252PubMedGoogle Scholar
  47. Zeil J, Boeddecker N, Hemmi J, Stürzl W (2007) Going wild: towards an ecology of visual information processing. In: North G, Greenspan R (eds.) Invertebrate neurobiology. Cold Spring Harbor Monograph Series 49. Chap. 15Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bartholomew Baddeley
    • 1
    Email author
  • Andrew Philippides
    • 1
  • Paul Graham
    • 1
  • Natalie Hempel de Ibarra
    • 2
  • Thomas Collett
    • 1
  • Phillip Husbands
    • 1
  1. 1.Department of Informatics, Centre for Computational Neuroscience and RoboticsUniversity of SussexBrightonUK
  2. 2.School of PsychologyUniversity of ExeterExeterUK

Personalised recommendations