Biological Cybernetics

, Volume 101, Issue 1, pp 19–34 | Cite as

Robust path integration in the entorhinal grid cell system with hippocampal feed-back

  • Dávid Samu
  • Péter Erős
  • Balázs Ujfalussy
  • Tamás KissEmail author
Original Paper


Animals are able to update their knowledge about their current position solely by integrating the speed and the direction of their movement, which is known as path integration. Recent discoveries suggest that grid cells in the medial entorhinal cortex might perform some of the essential underlying computations of path integration. However, a major concern over path integration is that as the measurement of speed and direction is inaccurate, the representation of the position will become increasingly unreliable. In this paper, we study how allothetic inputs can be used to continually correct the accumulating error in the path integrator system. We set up the model of a mobile agent equipped with the entorhinal representation of idiothetic (grid cell) and allothetic (visual cells) information and simulated its place learning in a virtual environment. Due to competitive learning, a robust hippocampal place code emerges rapidly in the model. At the same time, the hippocampo-entorhinal feed-back connections are modified via Hebbian learning in order to allow hippocampal place cells to influence the attractor dynamics in the entorhinal cortex. We show that the continuous feed-back from the integrated hippocampal place representation is able to stabilize the grid cell code.


Sensor fusion Place representation Learning Noise Error correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral DG, Lavenex P (2006) Hippocampal neuroanatomy, chap 3. In: The hippocampus book. Oxford University Press, NYGoogle Scholar
  2. Amaral DG, Witter MP (1989) The three dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31: 571–591PubMedCrossRefGoogle Scholar
  3. Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern 83: 287–299PubMedCrossRefGoogle Scholar
  4. Barry C, Burgess N (2007) Learning in a geometric model of place cell firing. Hippocampus 17: 786–800PubMedCrossRefGoogle Scholar
  5. Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, Jeffery K, Burgess N (2006) The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci 17: 71–97PubMedGoogle Scholar
  6. Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10: 682–684PubMedCrossRefGoogle Scholar
  7. Bi Gq, Poo Mm (2001) Synapticmodification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24: 139–166PubMedCrossRefGoogle Scholar
  8. Blair HT, Welday AC, Zhang K (2007) Scale-invariant memory representations emerge from moiré interference between grid fields that produce theta oscillations: a computational model. J Neurosci 27: 3211–3229PubMedCrossRefGoogle Scholar
  9. Blais BS, Shouval HZ, Cooper LN (1999) The role of presynaptic activity in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms. Proc Natl Acad Sci USA 96(3): 1083–1084PubMedCrossRefGoogle Scholar
  10. Burgess N, O’Keefe J (1996) Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus 6: 749–762PubMedCrossRefGoogle Scholar
  11. Burgess N, Recce M, O’Keefe J (1994) A model of hippocampal function. Neural Netw 7: 1065–1081CrossRefGoogle Scholar
  12. Burgess N, Jackson A, Hartley T, O‘Keefe J (2000) Predictions derived from modelling the hippocampal role in navigation. Biol Cybern 83(3): 301–312PubMedCrossRefGoogle Scholar
  13. Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9): 801–812PubMedCrossRefGoogle Scholar
  14. Collett T, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (eds) Spatial representation in animals. Oxford University Press, NY, pp 18–53Google Scholar
  15. Érdi P, Somogyvári Z (2002) Post-Hebbian learning algorithms. In: Arbib MA (eds) The handbook of brain theory and neural networks, 2nd edn. The MIT Press, Cambridge, pp 533–539Google Scholar
  16. Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14: 180–192PubMedCrossRefGoogle Scholar
  17. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199: 201–209PubMedGoogle Scholar
  18. Etienne AS, Berlie J, Georgakopoulos J, Maurer R (1998) Role of dead reckoning in navigation. In: Healy S (ed) Spatial representation in animals, Oxford University Press, NY, pp 54–68Google Scholar
  19. Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26: 4266–4276PubMedCrossRefGoogle Scholar
  20. Fyhn M, Hafting T, Treves A, Moser MB, Moser EI (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446: 190–194PubMedCrossRefGoogle Scholar
  21. Gaussier P, Banquet JP, Sargolini F, Giovannangeli C, Save E, Poucet B (2007) A model of grid cells involving extra hippocampal path integration, and the hippocampal loop. J Integr Neurosci 6: 447–476PubMedCrossRefGoogle Scholar
  22. Gerstner W, Kistler W (2002) Spiking Neuron Models. Cambridge University Press, London.
  23. Giocomo L, Zilli E, Fransen E, Hasselmo M (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819): 1719–1722PubMedCrossRefGoogle Scholar
  24. Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the hippocampal ensemble code for space: Interaction between path integration and environmental cues. J Neurosci 16: 8027–8040PubMedGoogle Scholar
  25. Grossberg S (1974) Classical and instrumental conditioning by neural networks. Prog Theor Biol 3: 51–141Google Scholar
  26. Grossberg S (1976a) Adaptive pattern classification and universal recoding I: parallel development and coding of neural feature detectors. Biol Cybern 23: 121–134PubMedCrossRefGoogle Scholar
  27. Grossberg S (1976b) Adaptive pattern classification and universal recoding II: feedback, expectation, olfaction, and illusions. Biol Cybern 23: 187–202PubMedCrossRefGoogle Scholar
  28. Guanella A, Verschure PFMJ (2006) A model of grid cells based on a path integration mechanism. In: Kollias S, Stafylopatis A, Duch W, Oja E (eds) Artificial Neural Networks—ICANN 2006, Lecture Notes in Computer Science, vol 4131. Springer, Berlin, pp 740–749Google Scholar
  29. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801– 806PubMedCrossRefGoogle Scholar
  30. Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453(7199): 1248–1252PubMedCrossRefGoogle Scholar
  31. Hasselmo M, Giocomo L, Zilli E (2007) Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17(12): 1252–1271PubMedCrossRefGoogle Scholar
  32. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  33. Jeffery KJ (1998) Learning of landmark stability and instability by hippocampal place cells. Neuropharmacology 37: 677–687PubMedCrossRefGoogle Scholar
  34. Jeffery KJ (2007) Integration of the sensory inputs to place cells: what, where, why, and how. Hippocampus 17: 775–785PubMedCrossRefGoogle Scholar
  35. Jeffery KJ, O’Keefe J (1999) Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp Brain Res 127: 151–161PubMedCrossRefGoogle Scholar
  36. Kloosterman F, Van Haeften T, Witter MP, Lopes Da Silva FH (2003) Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal-entorhinal system. Eur J Neurosci 18: 3037–3052PubMedCrossRefGoogle Scholar
  37. Knierim JJ, Kudrimoti HS, McNaughton BL (1995) Place cells, head direction cells, and the learning of landmark stability. J Neurosci 15: 1648–1659PubMedGoogle Scholar
  38. Lengyel M, Kwag J, Paulsen O, Dayan P (2005) Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nat Neurosci 8(12): 1677–1683PubMedCrossRefGoogle Scholar
  39. Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315: 961–966PubMedCrossRefGoogle Scholar
  40. Lőrincz A, Buzsáki G (2000) Two-phase computational model training long-term memories in the entorhinal-hippocampal region. Ann NY Acad Sci 911: 83–111PubMedCrossRefGoogle Scholar
  41. Maaswinkel H, Whishaw IQ (1999) Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation. Behav Brain Res 99: 143–152PubMedCrossRefGoogle Scholar
  42. McNaughton BL, Barnes C, Gerrard J, Gothard K, Jung M, Knierim J, Kudrimoti H, Qin Y, Skaggs W, Suster M, Weaver K (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199: 173–185PubMedGoogle Scholar
  43. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7: 663–678PubMedCrossRefGoogle Scholar
  44. Michel O (2004) Webots: professional mobile robot simulation. J Adv Robot Syst 1(1):39–42. Google Scholar
  45. Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7: 1951–1968PubMedGoogle Scholar
  46. Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Curr Biol 18: 689–693PubMedCrossRefGoogle Scholar
  47. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Res 34: 171–175PubMedCrossRefGoogle Scholar
  48. O’Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford University Press, NY.
  49. O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15: 853–866PubMedCrossRefGoogle Scholar
  50. Oser HJ, Murchland JD, Daley DJ, Vaughan RJ (1990) An average distance. In: Klamkin MS (ed) Problems in Applied Mathematics: Selections from SIAM Review, Society for Industrial Mathematics, Philadelphia, pp 76–79Google Scholar
  51. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., ISBN 3-900051-07-0
  52. Rolls ET (1995) A model of the operation of the hippocampus and entorhinal cortex in memory. Int J Neural Syst 6: 51–71Google Scholar
  53. Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79: 1–48PubMedCrossRefGoogle Scholar
  54. Rolls ET, Stringer SM, Elliot T (2006) Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network 17: 447–465PubMedCrossRefGoogle Scholar
  55. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2007) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312: 758–762CrossRefGoogle Scholar
  56. Séguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol A 173: 103–113PubMedCrossRefGoogle Scholar
  57. Sharp PE (1991) Computer simulation of hippocampal place cells. Psychobiology 19(2): 103–115Google Scholar
  58. Shibata H (1988) A direct projection from the entorhinal cortex to the mammillary nuclei in the rat. Neurosci Lett 90: 6–10PubMedCrossRefGoogle Scholar
  59. Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells: a mathematical model. Hippocampus 16: 1026–1031PubMedCrossRefGoogle Scholar
  60. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 19(5909): 1865–1868CrossRefGoogle Scholar
  61. Taube JS (2007) The head direction signal: Origins and sensory-motor integration. Annu Rev Neurosci 30: 181–207PubMedCrossRefGoogle Scholar
  62. Touretzky DS, Redish AD (1996) Theory of rodent navigation based on interacting representations of space. Hippocampus 6(3): 247–270PubMedCrossRefGoogle Scholar
  63. Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374–391PubMedCrossRefGoogle Scholar
  64. Ujfalussy B, Erős P, Somogyvári Z, Kiss T (2008) Episodes in space: a modelling study of hippocampal place representation. In: Asada M, Hallam JCT, Meyer JA, Tani J (eds) From animals to animats, ISAB, Springer, Lecture Notes in Artificial Intelligence, vol 5040, pp 123–136Google Scholar
  65. van Haeften T, Baks-te-Bulte L, Goede PH, Wouterlood FG, Witter MP (2003) Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus 13: 943–952PubMedCrossRefGoogle Scholar
  66. Wiener SI, Korshunov VA, Garcia R, A B (1995) Inertial, substratal and landmark cue control of hippocampal CA1 place cell activity. Eur J Neurosci 7: 2206–2219PubMedCrossRefGoogle Scholar
  67. Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261: 1055–1058PubMedCrossRefGoogle Scholar
  68. Witter MP, Naber PA, van Haeften T, Machielsen WCM, Rombouts SARB, Barkhof F, Scheltens P, Lopesda Silva FH (2000) Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10: 398–410PubMedCrossRefGoogle Scholar
  69. Zipser D (1985) A computational model of hippocampal place fields. Behav Neurosci 99(5): 1006–1018PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dávid Samu
    • 1
  • Péter Erős
    • 1
  • Balázs Ujfalussy
    • 1
  • Tamás Kiss
    • 1
    Email author
  1. 1.Department of BiophysicsKFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations