Biological Cybernetics

, Volume 100, Issue 3, pp 203–214 | Cite as

Bayesian models of eye movement selection with retinotopic maps

  • Francis ColasEmail author
  • Fabien Flacher
  • Thomas Tanner
  • Pierre Bessière
  • Benoît Girard
Open Access
Original Paper


Among the various possible criteria guiding eye movement selection, we investigate the role of position uncertainty in the peripheral visual field. In particular, we suggest that, in everyday life situations of object tracking, eye movement selection probably includes a principle of reduction of uncertainty. To evaluate this hypothesis, we confront the movement predictions of computational models with human results from a psychophysical task. This task is a freely moving eye version of the multiple object tracking task, where the eye movements may be used to compensate for low peripheral resolution. We design several Bayesian models of eye movement selection with increasing complexity, whose layered structures are inspired by the neurobiology of the brain areas implied in this process. Finally, we compare the relative performances of these models with regard to the prediction of the recorded human movements, and show the advantage of taking explicitly into account uncertainty for the prediction of eye movements.


Bayesian modeling Retinotopic maps Eye movements selection Multiple-object tracking 


  1. Alvarez GA, Cavanagh P (2005) Independent resources for attentional tracking in the left and right visual hemifields. Psychol Sci 16(8): 637–643CrossRefPubMedGoogle Scholar
  2. Alvarez GA, Franconeri SL (2007) How many objects can you attentively track? Evidence for a resource-limited tracking mechanism. J Vis 7(13):1–10. Google Scholar
  3. Barash S, Bracewell R, Fogassi L, Gnadt J, Andersen R (1991a) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66(3): 1095–1108PubMedGoogle Scholar
  4. Barash S, Bracewell R, Fogassi L, Gnadt J, Andersen R (1991b) Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J Neurophysiol 66(3): 1109–1124PubMedGoogle Scholar
  5. Ben Hamed S, Duhamel JR, Bremmer F, Graf W (2001) Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp Brain Res 140: 127–144CrossRefPubMedGoogle Scholar
  6. Bessière P, Laugier C, Siegwart R (2008) Probabilistic reasoning and decision making in sensory-motor systems. Springer, BerlinCrossRefGoogle Scholar
  7. Bozis A, Moschovakis A (1998) Neural network simulations of the primate oculomotor system III. An one-dimensional, one-directional model of the superior colliculus. Biol Cybern 79: 215–230CrossRefPubMedGoogle Scholar
  8. Cavanagh P, Alvarez GA (2005) Tracking multiple targets with multifocal attention. Trends Cogn Sci 9(7): 349–354CrossRefPubMedGoogle Scholar
  9. Droulez J, Berthoz A (1991) A neural network model of sensoritopic maps with predictive short-term memory properties. Proc Natl Acad Sci 88: 9653–9657CrossRefPubMedGoogle Scholar
  10. Elfes A (1989) Occupancy grids: a probabilistic framework for robot perception and navigation. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USAGoogle Scholar
  11. Fehd HM, Seiffert AE (2008) Eye movements during multiple object tracking: where do participants look. Cognition 108(1): 201–209CrossRefPubMedGoogle Scholar
  12. Gnadt J, Andersen R (1988) Memory related motor planning activity in the posterior arietal cortex of the macaque. Exp Brain Res 70(1): 216–220PubMedGoogle Scholar
  13. Goldberg M, Bruce C (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J Neurophysiol 64(2): 489–508PubMedGoogle Scholar
  14. Herrero L, Rodríguez F, Salas C, Torres B (1998) Tail and eye movememnts evoked by electrical microstimulation of the optic tectum in goldfish. Exp Brain Res 120: 291–305CrossRefPubMedGoogle Scholar
  15. Krauzlis R (2004) Recasting the smooth pursuit eye movement system. J Neurophysiol 91(2): 591–603CrossRefPubMedGoogle Scholar
  16. Lebeltel O, Bessière P, Diard J, Mazer E (2004) Bayesian robots programming. Auton Robots 16(1): 49–79CrossRefGoogle Scholar
  17. Mays L, Sparks D (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43(1): 207–232PubMedGoogle Scholar
  18. McIlwain J (1976) Large receptive fields and spatial transformations in the visual system. In: Porter R (eds) Neurophysiology II, Int Rev Physiol, vol 10. University Park Press, Baltimore, pp 223–248Google Scholar
  19. McIlwain J (1983) Representation of the visual streak in visuotopic maps of the cat’s superior colliculus: influence of the mapping variable. Vis Res 23(5): 507–516CrossRefPubMedGoogle Scholar
  20. Mitchell J, Zipser D (2003) Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields. Vis Res 43: 2669–2695CrossRefPubMedGoogle Scholar
  21. Moschovakis A, Scudder C, Highstein S (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50: 133–254CrossRefPubMedGoogle Scholar
  22. Ottes F, van Gisbergen JA, Eggermont J (1986) Visuomotor fields of the superior colliculus: a quantitative model. Vis Res 26(6): 857–873CrossRefPubMedGoogle Scholar
  23. Pylyshyn Z, Storm R (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vis 3(3): 1–19CrossRefGoogle Scholar
  24. Robinson D (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis Res 12: 1795–1808CrossRefPubMedGoogle Scholar
  25. Schwarz E (1980) Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vis Res 20: 645–669CrossRefGoogle Scholar
  26. Scudder C, Kaneko C, Fuchs A (2002) The brainstem burst generator for saccadic eye movements. A modern synthesis. Exp Brain Res 142: 439–462CrossRefPubMedGoogle Scholar
  27. Siminoff R, Schwassmann H, Kruger L (1966) An electrophysiological study of the visual projection to the superior colliculus of the rat. J Comp Neurol 127: 435–444CrossRefPubMedGoogle Scholar
  28. Sommer M, Wurtz R (2000) Composition and topographic organization of signals sent from the frontal eye fields to the superior colliculus. J Neurophysiol 83: 1979–2001PubMedGoogle Scholar
  29. Tanner T, Canto-Pereira L, Bülthoff H (2007) Free vs. constrained gaze in a multiple-object-tracking-paradigm. In: 30th European Conference on Visual Perception, Arezzo, ItalyGoogle Scholar
  30. Wurtz R, Sommer M, Paré M, Ferraina S (2001) Signal transformation from cerebral cortex to superior colliculus for the generation of saccades. Vis Res 41: 3399–3412CrossRefPubMedGoogle Scholar
  31. Zelinsky GJ, Neider MB (2008) An eye movement analysis of multiple object tracking in a realistic environment. Vis Cogn 16(5): 553–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Francis Colas
    • 1
    Email author
  • Fabien Flacher
    • 1
  • Thomas Tanner
    • 2
  • Pierre Bessière
    • 3
  • Benoît Girard
    • 1
  1. 1.Laboratoire de Physiologie de la Perception et de l’ActionCNRS/Collège de FranceParis Cedex 05France
  2. 2.Department of Cognitive and Computational PsychophysicsMPI for Biological CyberneticsTübingenGermany
  3. 3.Laboratoire d’Informatique de GrenobleCNRS/Grenoble UniversitésMontbonnotFrance

Personalised recommendations