Advertisement

Biological Cybernetics

, 99:319 | Cite as

Dynamics and bifurcations of the adaptive exponential integrate-and-fire model

  • Jonathan Touboul
  • Romain BretteEmail author
Original Paper

Abstract

Recently, several two-dimensional spiking neuron models have been introduced, with the aim of reproducing the diversity of electrophysiological features displayed by real neurons while keeping a simple model, for simulation and analysis purposes. Among these models, the adaptive integrate-and-fire model is physiologically relevant in that its parameters can be easily related to physiological quantities. The interaction of the differential equations with the reset results in a rich and complex dynamical structure. We relate the subthreshold features of the model to the dynamical properties of the differential system and the spike patterns to the properties of a Poincaré map defined by the sequence of spikes. We find a complex bifurcation structure which has a direct interpretation in terms of spike trains. For some parameter values, spike patterns are chaotic.

Keywords

Integrate-and-fire Spiking neuron models Dynamical systems Bifurcations Chaos 

References

  1. Angelino E, Brenner MP (2007) Excitability constraints on voltage-gated sodium channels. PLoS Comput Biol 3(9): 1751–1760CrossRefPubMedGoogle Scholar
  2. Badel L, Lefort S, Brette R, Petersen C, Gerstner W, Richardson M (2008) Dynamic IV curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99(2): 656CrossRefPubMedGoogle Scholar
  3. Brette R (2004) Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38–56CrossRefPubMedGoogle Scholar
  4. Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94: 3637–3642CrossRefPubMedGoogle Scholar
  5. Clopath C, Jolivet R, Rauch A, Lüscher H, Gerstner W (2007) Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments. Neurocomputing 70(10–2): 1668–1673CrossRefGoogle Scholar
  6. Fourcaud-Trocme N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23(37): 11,628Google Scholar
  7. Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, CambridgeGoogle Scholar
  8. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinformatics (in preparation)Google Scholar
  9. Hille B (2001) Ion channels of excitable membranes. Sinauer Sunderland, MassachusettsGoogle Scholar
  10. Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5): 1063–1070CrossRefPubMedGoogle Scholar
  11. Izhikevich E (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, CambridgeGoogle Scholar
  12. Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Meth 169(2): 417–424CrossRefGoogle Scholar
  13. Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9: 620–635Google Scholar
  14. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10): 793–807CrossRefPubMedGoogle Scholar
  15. Naud R, Macille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern (submitted)Google Scholar
  16. Richardson MJ, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89(5): 2538–2554CrossRefPubMedGoogle Scholar
  17. Touboul J (2008) Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM Appl Math 68: 1045–1079CrossRefGoogle Scholar
  18. Touboul J, Brette R (2008) Spiking dynamics of bidimensional integrate-and-fire neurons (in preparation)Google Scholar
  19. Wang XJ (1993) Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Phys D 62: 263–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Département d’Informatique, Projet OdysséeEcole Normale SupérieureParis Cedex 05France

Personalised recommendations