Biological Cybernetics

, 99:79

Distributed delays stabilize neural feedback systems

  • Ulrike Meyer
  • Jing Shao
  • Saurish Chakrabarty
  • Sebastian F. Brandt
  • Harald Luksch
  • Ralf Wessel
Original Paper

Abstract

We consider the effect of distributed delays in neural feedback systems. The avian optic tectum is reciprocally connected with the isthmic nuclei. Extracellular stimulation combined with intracellular recordings reveal a range of signal delays from 3 to 9 ms between isthmotectal elements. This observation together with prior mathematical analysis concerning the influence of a delay distribution on system dynamics raises the question whether a broad delay distribution can impact the dynamics of neural feedback loops. For a system of reciprocally connected model neurons, we found that distributed delays enhance system stability in the following sense. With increased distribution of delays, the system converges faster to a fixed point and converges slower toward a limit cycle. Further, the introduction of distributed delays leads to an increased range of the average delay value for which the system’s equilibrium point is stable. The system dynamics are determined almost exclusively by the mean and the variance of the delay distribution and show only little dependence on the particular shape of the distribution.

Keywords

Feedback Delays Vision Optic tectum Nucleus isthmi 

References

  1. an der Heiden U (1979) Delays in physiological systems. J Math Biol 8: 345–364PubMedGoogle Scholar
  2. Atay FM (2003) Distributed delays facilitate amplitude death of coupled oscillators. Phys Rev L 91: 094101CrossRefGoogle Scholar
  3. Babcock KL, Westervelt RM (1987) Dynamics of simple electronic neural networks. Phys D 28: 305–316CrossRefGoogle Scholar
  4. Bernard S, Belair J, Mackey MC (2001) Sufficient conditions for stability of linear differential equations with distributed delay. Discrete Contin Dyn Syst Ser B 1: 233–256Google Scholar
  5. Brandt SF, Wessel R (2007) Winner-take-all selection in a neural system with delayed feedback. Biol Cybern 97: 221–228PubMedCrossRefGoogle Scholar
  6. Braiman Y, Lindner JF, Ditto WL (1995) Taming spatiotemporal chaos with disorder. Nature 378: 465–467CrossRefGoogle Scholar
  7. Brandt SF, Pelster A, Wessel R (2006a) Variational calculation of the limit cycle and its frequency in a two-neuron model with delay. Phys Rev E 74: 036201CrossRefGoogle Scholar
  8. Brandt SF, Dellen BK, Wessel R (2006b) Synchronization from disordered driving forces in arrays of coupled oscillators. Phys Rev Lett 96: 034104PubMedCrossRefGoogle Scholar
  9. Brandt SF, Pelster A, Wessel R (2007) Synchronization in a neuronal feedback loop through asymmetric temporal delays. Europhys Lett 79: 38001CrossRefGoogle Scholar
  10. Chacón R, Martínez PJ (2007) Controlling chaotic solitons in Frenkel–Kontorova chains by disordered driving forces. Phys Rev Lett 98: 224102PubMedCrossRefGoogle Scholar
  11. Coleman BD, Renninger GH (1976) Periodic solutions of certain nonlinear integral equations with a time lag. SIAM J Appl Math 31: 111–120CrossRefGoogle Scholar
  12. Cooke KL, Grossman Z (1982) Discrete delay, distributed delay and stability switches. J Math Anal Appl 86: 592–627CrossRefGoogle Scholar
  13. Domesick VB, Morest DK (1977) Migration and differentiation of Shepherd’s crook cells in the optic tectum of the chick embryo. Neuroscience 2: 477–491PubMedCrossRefGoogle Scholar
  14. Dye JC, Karten HJ (1996) An in vitro study of retinotectal transmission in the chick: role of glutamate and GABA in evoked field potentials. Vis Neurosci 13: 747–758PubMedCrossRefGoogle Scholar
  15. Eurich CW, Mackey MC, Schwegler H (2002) Recurrent inhibitory dynamics: the role of state-dependent distributions of conduction delay times. J Theor Biol 216: 31–50PubMedCrossRefGoogle Scholar
  16. Eurich CW, Thiel A, Fahse L (2005) Distributed delays stabilize ecological feedback systems. Phys Rev Lett 94: 158104PubMedCrossRefGoogle Scholar
  17. Fisher I, Vicente R, Buldu JM, Peil M, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2006) Zero-lag long-range synchronization via dynamical relaying. Phys Rev Lett 97: 123902CrossRefGoogle Scholar
  18. Foss J, Milton J (2000) Multistability in recurrent loops arising from delay. J Neurophysiol 84: 975–985PubMedGoogle Scholar
  19. Foss J, Longtin A, Mensour B, Milton J (1996) Multistability and delayed recurrent loops. Phys Rev L 76: 708CrossRefGoogle Scholar
  20. Foss J, Moss F, Milton J (1997) Noise, multistability, and delayed recurrent loops. Phys Rev E 55: 4536CrossRefGoogle Scholar
  21. Gopalsamy K, Leung IKC, Liu P (1998) Global Hopf-bifurcation in a neural netlet. Appl Math Comput 94: 171–192CrossRefGoogle Scholar
  22. Gruberg ER, Dudkin EA, Wang Y, Marin G, Salas C, Sentis E, Letelier JC, Mpodozis J, Malpeli J, Cui H, Ma R, Northmore D, Udin S (2006) Influencing and interpreting visual input: the role of a visual feedback system. J Neurosci 26: 10368–10371PubMedCrossRefGoogle Scholar
  23. Güntürkün O, Remy M (1990) The topographical projection of the nucleus isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neurosci Lett 111: 18–22PubMedCrossRefGoogle Scholar
  24. Hellmann B, Manns M, Güntürkün O (2001) Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons. J Comp Neurol 436: 153–166PubMedCrossRefGoogle Scholar
  25. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci 81: 3088–3092PubMedCrossRefGoogle Scholar
  26. Hunt SP, Künzle H (1976) Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J Comp Neurol 170: 153–172PubMedCrossRefGoogle Scholar
  27. Hunt SP, Streit P, Kunzle H, Cuenod M (1977) Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by Golgi-like horseradish peroxidase labeling. Brain Res 129: 197–212PubMedCrossRefGoogle Scholar
  28. Khanbabaie R, Mahani A, Wessel R (2007) Contextual interaction of GABAergic circuitry with dynamic synapses. J Neurophysiol 97: 2802–2811PubMedCrossRefGoogle Scholar
  29. Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4: 219–227PubMedGoogle Scholar
  30. Laing CR, Longtin A (2003) Dynamics of deterministic and stochastic paired excitatory–inhibitory delayed feedback. Neural Comput 15: 2779–2822PubMedCrossRefGoogle Scholar
  31. Liao X, Li S, Chen G (2004) Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural Netw 17: 545–561PubMedCrossRefGoogle Scholar
  32. Luksch H (2003) Cytoarchitecture of the avian optic tectum: neuronal substrate for cellular computation. Rev Neurosci 14: 85–106PubMedGoogle Scholar
  33. Luksch H, Cox K, Karten HJ (1998) Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. J Comp Neurol 396: 399–414PubMedCrossRefGoogle Scholar
  34. Luksch H, Karten HJ, Kleinfeld D, Wessel R (2001) Chattering and differential signal processing in identified motion sensitive neurons of parallel visual pathways in chick tectum. J Neurosci 21: 6440–6446PubMedGoogle Scholar
  35. Luksch H, Khanbabaie R, Wessel R (2004) Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat Neurosci 7: 380–388PubMedCrossRefGoogle Scholar
  36. Maczko KA, Knudsen PF, Knudsen EI (2006) Auditory and visual space maps in the cholinergic nucleus isthmi pars parvocellularis in the barn owl. J Neurosci 26: 12799–12806PubMedCrossRefGoogle Scholar
  37. Mahani AS, Khanbabaie R, Luksch H, Wessel R (2006) Sparse spatial sampling for the computation of motion in multiple stages. Biol Cybern 94: 276–287PubMedCrossRefGoogle Scholar
  38. Marcus CM, Westervelt RM (1989) Stability of analog neural networks with delay. Phys Rev A 39: 347–359PubMedCrossRefGoogle Scholar
  39. Marin G, Mpodozis J, Sentis E, Ossandon T, Letelier JC (2005) Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. J Neurosci 25: 7081–7089PubMedCrossRefGoogle Scholar
  40. Marin G, Salas C, Sentis E, Rojas X, Letelier JC, Mpodozis J (2007) A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon. J Neurosci 27: 8112–8121PubMedCrossRefGoogle Scholar
  41. Milton J (1996) Dynamics of small neural populations. American Mathematical Society, ProvidenceGoogle Scholar
  42. Ramón y Cajal S (1911) Le lobe optique des vertébrés inférieurs, toit optique des oiseaux. In: Ramón y Cajal S (ed) Histologie du système nerveux de l’homme et des vertébrés. Madrid, pp 196–212Google Scholar
  43. Sebesteny T, Davies DC, Zayats N, Nemeth A, Tömböl T (2002) The ramification and connections of retinal fibres in layer 7 of the domestic chick optic tectum: a golgi impregnation, anterograde tracer and GABA-immunogold study. J Anat 200: 169–183PubMedCrossRefGoogle Scholar
  44. Sereno MI, Ulinski PS (1987) Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta. J Comp Neurol 261: 319–346PubMedCrossRefGoogle Scholar
  45. Shepherd GM (2003) The synaptic organization of the brain. Oxford University Press, New YorkGoogle Scholar
  46. Thiel A, Schwegler H, Eurich CW (2003) Complex dynamics is abolished in delayed recurrent systems with distributed feedback times. Complexity 8: 102–108CrossRefGoogle Scholar
  47. Tömböl T, Németh A (1998) GABA-immunohistological observations, at the electron-microscopical level, of the neurons of isthmic nuclei in chicken, Gallus domesticus. Cell Tissue Res 291: 255–266PubMedCrossRefGoogle Scholar
  48. Tömböl T, Egedi G, Németh A (1995) Some data on connections of neurons of nuclei isthmi of the chicken. J Hirnforsch 36: 501–508PubMedGoogle Scholar
  49. Wang SR (2003) The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. Brain Res Rev 41: 13–25PubMedCrossRefGoogle Scholar
  50. Wang YC, Frost BJ (1991) Visual response characteristics of neurons in the nucleus isthmi parvocellularis of pigeons. Exp Brain Res 87: 624–633PubMedCrossRefGoogle Scholar
  51. Wang Y, Major DE, Karten HJ (2004) Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J Comp Neurol 469: 275–297PubMedCrossRefGoogle Scholar
  52. Wang Y, Luksch H, Brecha NC, Karten HJ (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 494: 7–35PubMedCrossRefGoogle Scholar
  53. Wei J, Ruan S (1999) Stability and bifurcation in a neural network with two delays. Phys D 130: 255–272CrossRefGoogle Scholar
  54. Woodson W, Reiner A, Anderson K, Karten HJ (1991) Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labelling study. J Comp Neurol 305: 470–488PubMedCrossRefGoogle Scholar
  55. Zhao H (2003) Global stability of neural networks with distributed delays. Phys Rev E 68: 051909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ulrike Meyer
    • 1
  • Jing Shao
    • 2
  • Saurish Chakrabarty
    • 2
  • Sebastian F. Brandt
    • 2
  • Harald Luksch
    • 3
  • Ralf Wessel
    • 2
  1. 1.Institute for Biology IIRWTHAachenGermany
  2. 2.Department of PhysicsWashington UniversitySt LouisUSA
  3. 3.Lehrstuhl für ZoologieTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations