Biological Cybernetics

, Volume 98, Issue 3, pp 185–194 | Cite as

Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat

  • Ben Mitchinson
  • Ehsan Arabzadeh
  • Mathew E. Diamond
  • Tony J. Prescott
Original Paper


In previous work, we constructed a simple electro-mechanical model of transduction in the rat mystacial follicle that was able to replicate primary afferent response profiles to a variety of whisker deflection stimuli. Here, we update that model to fit newly available spike-timing response data, and demonstrate that the new model produces appropriate responses to richer stimuli, including pseudo white noise and natural textures, at a spike-timing level of detail. Additionally, we demonstrate reliable distributed encoding of multi-component oscillatory signals. No modifications were necessary to the mechanical model of the physical components of the follicle-sinus complex, supporting its generality. We conclude that this model, and its continued development, will aid the understanding both of somatosensory systems in general, and of physiological results from higher (e.g. thalamocortical) systems by accurately characterising the signals on which they operate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406(6793): 302–06CrossRefPubMedGoogle Scholar
  2. Andermann ML, Ritt J, Neimark MA, Moore CI (2004) Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli. Neuron 42(3): 451–63CrossRefPubMedGoogle Scholar
  3. Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3(1): e17CrossRefPubMedGoogle Scholar
  4. Bensmaïa S (2002) A transduction model of the meissner corpuscle. Math Biosci 176(2): 203–17CrossRefPubMedGoogle Scholar
  5. Bensmaïa SJ, Sripati A, Johnson KO (2005) A biophysical model of afferent responses to dynamic stimuli. Poster presented at the 35th annual meeting of the Society for Neuroscience, Washington, DCGoogle Scholar
  6. Dykes RW (1975) Afferent fibers from mystacial vibrissae of cats and seals. J Neurophysiol 38(3): 650–62PubMedGoogle Scholar
  7. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449(2): 103–19CrossRefPubMedGoogle Scholar
  8. Eliasmith C, Anderson CH (2003) Neural Engineering. MIT Press, CambridgeGoogle Scholar
  9. Freeman AW, Johnson KO (1982) Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. J Physiol 323: 21–1PubMedGoogle Scholar
  10. Gibson JM, Welker WI (1983a) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1(1): 51–7CrossRefPubMedGoogle Scholar
  11. Gibson JM, Welker WI (1983b) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1(2): 95–17CrossRefPubMedGoogle Scholar
  12. Godfrey, K (eds) (1993) Perturbation signals for system identification. Prentice Hall, Englewood CliffsGoogle Scholar
  13. Gottschaldt KM, Iggo A, Young DW (1973) Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol 235(2): 287–15PubMedGoogle Scholar
  14. Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214(4517): 183–86CrossRefPubMedGoogle Scholar
  15. Hahn JF (1971) Stimulus-response relationships in first-order sensory fibres from cat vibrissae. J Physiol 213(1): 215–26PubMedGoogle Scholar
  16. Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23(16): 6510–519PubMedGoogle Scholar
  17. Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004) Precise temporal responses in whisker trigeminal neurons. J Neurophysiol 92(1): 665–68CrossRefPubMedGoogle Scholar
  18. Kim D, Möller R (2004) A biomimetic whisker for texture discrimination and distance estimation. In: Proc of the Int Conf on the Sim of Adap Behav (SAB)Google Scholar
  19. Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16(4): 435–4CrossRefPubMedGoogle Scholar
  20. Kyriazi HT, Carvell GE, Simons DJ (1994) Off response transformations in the whisker/barrel system. J Neurophysiol 72(1): 392–01PubMedGoogle Scholar
  21. Kyriazi HT, Simons DJ (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13(4): 1601–615PubMedGoogle Scholar
  22. Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7(1): 47–5CrossRefPubMedGoogle Scholar
  23. Ma PM (1991) The barrelettes-architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization. J Comp Neurol 309(2): 161–99CrossRefPubMedGoogle Scholar
  24. Mehta SB, Kleinfeld D (2004) Frisking the whiskers. Patterned sensory input in the rat vibrissa system. Neuron 41(2): 181–84CrossRefPubMedGoogle Scholar
  25. Minnery BS, Simons DJ (2003) Response properties of whisker- associated trigeminothalamic neurons in rat nucleus principalis. J Neurophysiol 89(1): 40–6CrossRefPubMedGoogle Scholar
  26. Mitchinson B, Gurney KN, Redgrave P, Melhuish C, Pipe AG, Pearson M, Gilhespy I, Prescott TJ (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc R Soc Lond B Biol Sci 271(1556): 2509–516CrossRefGoogle Scholar
  27. Mitchinson B, Pearson M, Melhuish C, Prescott TJ (2006) A model of sensorimotor coordination in the rat whisker system. In: Proceedings of The International Conference on Simulation of Adaptive Behavior (ISAB)Google Scholar
  28. Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23(16): 6499–509PubMedGoogle Scholar
  29. Pearson MJ, Pipe AG, Melhuish C, Prescott TJ (2007) Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system. Adapt Behav 15: 223–40CrossRefGoogle Scholar
  30. Pinto DJ, Brumberg JC, Simons DJ (2000) Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol 83(3): 1158–166PubMedGoogle Scholar
  31. Rhodes PA, Llinás R (2005) A model of thalamocortical relay cells. J Physiol 565(Pt 3): 765–81CrossRefPubMedGoogle Scholar
  32. Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252(2): 154–74CrossRefPubMedGoogle Scholar
  33. Rieke F, Warland D, Steveninck RDRV, Bialek W (1999) Spikes: exploring the neural code. MIT Press, CambridgeGoogle Scholar
  34. Robichaud DR, Prete ZD, Grigg P (2003) Stretch sensitivity of cutaneous RA mechanoreceptors in rat hairy skin. J Neurophysiol 90(3): 2065–068CrossRefPubMedGoogle Scholar
  35. Shoykhet M, Doherty D, Simons DJ (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: Implications for higher level processing. Somatosens Mot Res 17(2): 171–80CrossRefPubMedGoogle Scholar
  36. Simons DJ (1983) Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res 276: 178–82CrossRefPubMedGoogle Scholar
  37. Slavík P, Bell J (1995) A mechanoreceptor model for rapidly and slowly adapting afferents subjected to periodic vibratory stimuli. Math Biosci 130(1): 1–3CrossRefPubMedGoogle Scholar
  38. Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40(3): 621–30CrossRefPubMedGoogle Scholar
  39. Trappenberg TP (2002) Fundamentals of computational neuroscience. Oxford University Press, OxfordGoogle Scholar
  40. Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2: 1–CrossRefGoogle Scholar
  41. Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Network 8: 127–64CrossRefGoogle Scholar
  42. Waite PME (2004) Trigeminal sensory system. In: Paxinos G (eds) The rat nervous system. Elsevier, Amsterdam, pp 817–51CrossRefGoogle Scholar
  43. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2): 205–42CrossRefPubMedGoogle Scholar
  44. Zucker E, Welker WI (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12(1): 138–56CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ben Mitchinson
    • 1
  • Ehsan Arabzadeh
    • 2
  • Mathew E. Diamond
    • 2
  • Tony J. Prescott
    • 1
  1. 1.Adaptive Behaviour Research Group, Department of PsychologyThe University of SheffieldSheffieldUK
  2. 2.Cognitive Neuroscience SectorItalian Institute of Technology—SISSA unit, International School for Advanced StudiesTriesteItaly

Personalised recommendations